

Modular development and application of platform QSP models to support a broad R&D portfolio

Examples from immuno-oncology and respiratory therapeutic areas

Loveleena Bansal Scientific Leader, GSK

Outline

- Strategy for Developing QSP Models
- Modular Development of a QSP Model for Immuno-Oncology
- **QSP** Automation Tools
- Application of a QSP Platform Model for COPD Portfolio

Development of Platform QSP Models

Mechanistic modeling of disease/toxicity pathways at various scales and drug pharmacology to link the effect of **target engagement** to **clinical outcomes**

3

Modeling workflow and application

Modular development and application of platform QSP models to support a broad R&D portfolio

Loveleena Bansal, GSK

4

Strategy for Model Development

- Prioritization of QSP platform models for key GSK disease areas
- Modular development to allow re-use of developed models
 - Built a matrix of disease and modules to help prioritization

Modular Development of a QSP Model for Immuno-Oncology

Modeling done by Roy Song (GSK)

Multi-scale QSP/T model for Immuno-oncology

Model development at the cellular and tissue level

QSP/T IO Model Components

	Cell modules	Effector modules	Cell-cell interaction modules
Tissue compartments	Cell-types	Soluble effectors	Surface receptors (molecules)
Lymph (In)	Tumor cell (prototypical solid)	GM-CSF/ M-CSF	MHC-1 & -2
Blood (bld)	Dendritic cell	IFNg	CD80/86
TME (ts)	Type 1 & 2 Macrophages	TNFa	CD40/40L
	MDSC	TGFb	PD1/PD-L1
	B cells	IL-1/2/4/5/6/10/12	OX40
	Th0/1/2/17/Reg (CD4+) T cells	IL-13/15/17/18/23	CTLA4
	Naïve CD8+ / mature CTL T cells	CCL1/2/17/20/22	
	NK cells	CXCL1/5/9/10/11	

- 3 Tissue compartments
- 15 major cell-types with different states and transitions throughout different tissue compartments
- Production of 18 types of cytokines and 10 types of chemokines
- Tracking of 6 types of surface receptors/ligands
- Lends itself to modular development

Cell modules

Tissue compartments	Cell-types	Soluble effectors	Surface receptors (molecules)
Lymph (In)	Tumor cell (prototypical solid)	GM-CSF/ M-CSF	MHC-1 & -2
Blood (bld)	Dendritic cell	IFNg	CD80/86
TME (ts)	Type 1 & 2 Macrophages	TNFa	CD40/40L
	MDSC	TGFb	PD1/PD-L1
	B cells	IL-1/2/4/5/6/10/12	OX40
	Th0/1/2/17/Reg (CD4+) T cells	IL-13/15/17/18/23	CTLA4
	Naïve CD8+ / mature CTL T cells	CCL1/2/17/20/22	
	NK cells	CXCL1/5/9/10/11	

Each cell module describe the life cycle of one cell-type

- Different cell states (active, mature, differentiated, exhausted)
- Cell processes (proliferation, apoptosis, migration)
- Regulation of cell states and transitions by soluble effectors

Benefits:

- Each cell module can represent an *in-vitro* experiment, allows easier parameterization
- Easier to make changes as needed in these individual cell modules vs. "full model"

Effector modules

Tissue compartments	Cell-types	Soluble effectors	Surface receptors (molecules)
Lymph (In)	Tumor cell (prototypical solid)	GM-CSF/ M-CSF	MHC-1 & -2
Blood (bld)	Dendritic cell	IFNg	CD80/86
TME (ts)	Type 1 & 2 Macrophages	TNFa	CD40/40L
	MDSC	TGFb	PD1/PD-L1
	B cells	IL-1/2/4/5/6/10/12	OX40
	Th0/1/2/17/Reg (CD4+) T cells	IL-13/15/17/18/23	CTLA4
	Naïve CD8+ / mature CTL T cells	CCL1/2/17/20/22	
	NK cells	CXCL1/5/9/10/11	

Each effector module describe the production of cytokines and chemokines for each cell-type

Benefits:

- Each effector module can represent an *in-vitro* experiment, allows easier parameterization
- Easier to make changes as needed in these individual effector modules vs.
 "full model"

Effector production by M1 macrophage

Building the core IO model from cell and effector modules

Tissue compartments	Cell-types	Soluble effectors	Surface receptors (molecules)
Lymph (In)	Tumor cell (prototypical solid)	GM-CSF/ M-CSF	MHC-1 & -2
Blood (bld)	Dendritic cell	IFNg	CD80/86
TME (ts)	Type 1 & 2 Macrophages	TNFa	CD40/40L
	MDSC	TGFb	PD1/PD-L1
	B cells	IL-1/2/4/5/6/10/12	OX40
	Th0/1/2/17/Reg (CD4+) T cells	IL-13/15/17/18/23	CTLA4
	Naïve CD8+ / mature CTL T cells	CCL1/2/17/20/22	
	NK cells	CXCL1/5/9/10/11	

Rosa Webinar, June 20th 2019 Modular developn

Modular development and application of platform QSP models to support a broad R&D portfolio

		Resting T cell			Stimulated T ce	II	
Receptor	Data type (RNA or Protein)	Receptor conc.	Detectable expression	Peak expression	Receptor conc.	Receptor t1/2	Ref.
OX40	RNA Protein	No	12 h 24 h	24 h 40-48 h	~15,000/cell	2 h without ligand 30 min with ligand	1,2
PD1	RNA	Very low	2-24 h	48-72 h	NA	NA	3
CTLA4	RNA Protein	No	0 h 4 h	24-48 h 24-48 h	NA	2 h	4,5,6

References

- Soroosh, P., Ine, S., Sugamura, K., and Ishii, N. (2006). OX40-OX40 Ligand Interaction through T Cell-T Cell Contact Contributes to CD4 T Cell Longevity. The Journal of Immunology 176, 5975–5987
- Watanabe, N., Kuriyama, H., Sone, H., Neda, H., Yamauchi, N., Maeda, M., and Niitsu, Y. (1988). Continuous internalization of tumor necrosis factor receptors in a human myosarcoma cell line. J. Biol. Chem. 263, 10262–10266.

Chemnitz, J.M., Parry, R.V., Nichols, K.E., June, C.H., and Riley, J.L. (2004). SHP-1 and SHP-2 Associate with Immunoreceptor Tyrosine-Based Switch Motif of Programmed Death 1 3 upon Primary Human T Cell Stimulation, but Only Receptor Ligation Prevents T Cell Activation. The Journal of Immunology 173, 945–954.

- 4 Egen, J.G., and Allison, J.P. (2002). Cytotoxic T Lymphocyte Antigen-4 Accumulation in the Immunological Synapse Is Regulated by TCR Signal Strength. Immunity 16, 23–35.
- Linsley, P.S., Greene, J.L., Tan, P., Bradshaw, J., Ledbetter, J.A., Anasetti, C., and Damle, N.K. (1992). Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. Journal of Experimental Medicine 176, 1595–1604
- Knieke, K., Hoff, H., Maszyna, F., Kolar, P., Schrage, A., Hamann, A., Debes, G.F., and Brunner-Weinzierl, M.C. (2009). CD152 (CTLA-4) Determines CD4 T Cell Migration In Vitro and In Vivo. PLOS ONE 4, e5702.

Modeling Co-receptor expression dynamics and effect on Tcells

Rosa Webinar, June 20th 2019

Modular development and application of platform QSP models to support a broad R&D portfolio

Modeling Tumor Growth and Heterogeneity

Ribba, B., et al (2011). European Journal of Cancer 47, 479–490.

Mutational rate reflected by antigen production

Immune Cells

- TILs mainly in stroma or in outer tumor region
- Cytokine and chemokine production and co-receptor expression by tumor impacts immune cells migration and function

Altrock, P.M., Liu, L.L., and Michor, F. (2015). Nature Reviews Cancer 15, 730-745.

Hendry, S., et al. (2017). Advances in Anatomic Pathology 24, 235-251.

Rosa Webinar, June 20th 2019

Modular development and application of platform QSP models to support a broad R&D portfolio

Loveleena Bansal, GSK

14

Immune Cells in Tumor Microenvironment

No proliferation or effector production in hypoxic region

Rosa Webinar, June 20th 2019

Modular development and application of platform QSP models to support a broad R&D portfolio

Modular development and application of platform QSP models to support a broad R&D portfolio

gsk

Completed On-going

gsk

gsk

res = analyzeModel(m)

Fields	🔥 Name	🖬 Info	ch pf	🗄 Results
1	'Fluxes'	Checking fluxes for species'	'fail'	1x1 struct
2	'Reactions'	Checking reactions in the model'	'fail'	1xб struct
3	'Units'	Checking unit assignment'	'pass'	0

Flux checking to see if a species might go negative

res(1).Results				
Field 🔺	Value			
b Species	'cyto.TRX'			
h Name	'cyto.KEAP1ox + cyto.TRX -> cyto.KEAP1 + cyto.TRXox'			
h RxnRate	'kTrx * cyto.KEAP1ox * cyto.H2O2'			
RxnObj	1x1 Reaction			

Multiple model checks implemented

Negative flux for cyto.TRX but reaction rate doesn't depend on it

res(2).Results Inconsistencies in reaction and reaction rates

_	🗗 RxnObj	Name	ch RxnRate	0	Species		Completed
		'cyto.KEAP1ox + cyto.TRX -> cyto.KEAP1 + cyto.TRXox'	'kTrx * cvto.KEAP1ox * cvto.H2O2'	'cvto.H2O2'			On-going
		'cyto.KEAP1ox + cyto.TRX -> cyto.KEAP1 + cyto.TRXox'	'kTrx * cyto.KEAP1ox * cyto.H2O2'	'cyto.TRX'			
Ro	1x1 Reaction	'cyto.TRXox -> cyto.TRX'	'kTR * cvto.TR * cvto.TRXox * cvto.NADPH / (KTRTRX * K	2x1 cell		olio	Loveleena Bansal, GSK

gsk

Application of a QSP Platform Model for COPD Portfolio

Modeling done by Cibele V. Falkenberg (GSK)

COPD QSP Platform Overview

- Chronic Obstructive Pulmonary disease (COPD) is caused by long term exposure to irritants, primarily by cigarette smoke
- Complex disease, with coupled processes involving altered immune and tissue cell populations, leading to inflammation, mucus production and tissue destruction.

Model Development Team: GSK Modelers, GSK Respiratory Scientists, CRO (InSysBio)

Rosa Webinar, June 20th 2019

Modular development and application of platform QSP models to support a broad R&D portfolio

COPD QSP Platform Overview

Model Development using Cell and Effector Modules

State Variables (all cells, effectors & outputs) ~800 Number of Reactions ~2500 Number of Parameters ~ 3000

Ν		Com	non	ents
	100		pon	CIICS

6 Tissue Compartments	Lymph Node, Blood, Bone Marrow, Lung (Alveolar, Upper Airways, Lower Airways)	
19 Cell types	PBM, M1,M2 DC, Th0, Th1, Th2, Th17, Treg, CD8_naive, CTL, Neutrophils, Epithelial, endothelial, Eosinophils etc	
118 Cell states	active, inactive, M1 M2 etc (for all compartments)	
309 Cell processes	origination, maturation, proliferation, migration, activation, apoptosis (for each cell type)	
56 Regulators	55 (cytokines, chemokines, other effectors)	

Rosa Webinar, June 20th 2019 Modular development and application of platform QSP models to support a broad R&D portfolio

Cigarette Smoke driven disease progression

In the model, cigarette smoke (CS) is responsible for the transition from healthy to the COPD state.

Model validation

Comparison with Patient Data

Values for cell numbers, cytokines (and chemokines) in plasma and tissue were compared with human data.

- The simulated COPD state was obtained after 40yr exposure to high levels of CS.
- Data in tissue (aw) was calculated using measurements from BAL and sputum.
- Data from publications; number of data points ranging from 2 to 948 for each variable in each publication, mean=35.2;
- When available, variable average was calculated using several publications.

Target A: ROS production and elimination

- The model was updated to account for intracellular production of hydrogen peroxide, and its elimination.
- Target A engagement results in enhancement of the cell's ability to handle hydrogen peroxide.

Question from Program Team: How long does it take for biomarker changes resulting from target A modulation to be measurable?

Target A: QSP Modeling Results

gsk

Predicted intensity of response relative to predicted response after a full year of treatment (preliminary results)

	Airway	Plasma
Day 14	60%	70%
Day 30	80%	90%

Modeling supports a shorter duration clinical study (14 vs 30 days) would provide similar results.

Target B: COPD model currently applied for efficacious dose prediction to support candidate selection

Rosa Webinar, June 20th 2019 Modular develop

Modular development and application of platform QSP models to support a broad R&D portfolio

To hear more details

 Roy Song, "Development of immuno-oncology (IO) quantitative systems pharmacology (QSP) model for evaluation of clinical dose for coreceptor-mediated IO therapies"

SMB Annual Meeting, Montreal, Canada, 22nd-26th July, 2019

 Cibele Falkenberg, "Application of a Quantitative Systems Pharmacology (QSP) model of COPD progression for evaluating a novel mechanism targeting oxidative stress and inflammation in the lung"

ISoP Regional QSP Day 2019, Princeton NJ, 16th July 2019

Acknowledgements

GSK Modelers

- Cibele Falkenberg
- Roy Song
- Bob Bondi
- Paul Michalski
- Valeriu Damian
- Herbert Struemper
- Immuno-Oncology
- Niranjan Yanamandra
- Heather Jackson
- Paul Bojczuk

- Respiratory
- Yolanda Sanchez
- Phil Landis
- James Callahan
- Bill Rumsey
- Heidi Feldser
- CRO: InSysBio

Thank you!