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Local search:
“step-wise” regression

• Base (covariate free) model
– Keep known physiology in mind
– Compare compartment structures

• Residual error structure to minimize systematic errors
• Inter-individual variability where identifiable

– Lag-time or mixture models if relevant

• Final model
– Baseline structure
– Single covariate forward addition
– Single covariate backward elimination
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Genetic Algorithms

• What are they?

– A means of evaluating factors in a model where 
more than one factor can be changed at a single 
step.

– Partially automated to allow a more “complete” 
evaluation of the full grid search space for a 
particular candidate model.



Genetic Algorithms

• Approach:
– Replicate “survival of the fittest”

– Evolutionary process is imposed on the selection and 
“survival” of the “best” model descriptions

– Calculate an indicator of how “healthy” a particular 
individual model in the population is

– Utilized in multiple fields e.g. placing cell phone towers, 
predicting stock performance etc.



Genetic Algorithms

• “good” characteristics become more likely
• Efficient at finding “good” regions of solution space
• Slow to converge local “best”
• Adaptations

– Elitism
• Retain best candidate to next generation

– Local search hybrid
• Compare candidate with each model differing by 1 bit
• Every 5 generations



Genetic Algorithms
• Implementation in the context of population PK modeling (Bies 

and Sale 2006, JPP August, Sherer Sale and Bies 2012 JPP)

• Potential models are reduced to a bit-string (base-2 number 
assembly) that reflects the model “genetic” code

• Each model feature is coded as a base 2 number
– If there are 2 options the values are 0 or 1 [(0) (1)], if more 

than two options then one has multiple bits eg. [(0 0), (0 1), (1 
0), (1 1)]

• Features are strung together to produce aforementioned bit 
string

• Model can be reproduced based on the bit string that results



Global optimization:
genetic algorithm

• Single-objective
– Default composite fitness measure (initial implementation)

• -2 x log-likelihood
• Penalty per model variable (10 points)
• Penalties for failure to converge (400), covariance (400), and 

correlation (300)



Model Selection

• Model evaluation criteria
– -2 x log-likelihood
– Number of parameters
– Diagnostic plots

Compartment structure
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IIV on CL
No relationship
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Proportional
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Power-law
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New candidate 1

Basic genetic algorithm
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Basic genetic algorithm

Repeat reproduction, 
crossover, and mutation 
operations until a new 
candidate pool is created

Repeat process for desired 
number of 30-50 
generations

New candidate 1.  
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Residual error
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Combined

New candidate models
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Compartment structure
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1 compartment lag
2 compartments
2 compartments lag

Residual error
Additive
Proportional
Combined



Adapted from
Br J Clin Pharmacol 2013 Jun 17 Epub ahead of print

(0,0)=1 compartment, first order absorption
(0,1,)=1 compartment, first order absorption, lag
(1,0)= 2 compartment, first order absorption
(1,1,)=2 compartment first order absorption, lag



Covariate Search Comparison

• Evaluation of performance of multiple methods
– True model simulated with relatively dense sampling
– Exponential relationship with BMI and CrCL on 

clearance
– Exponential relationship BSA and Sex on volume
– Compared:

• Stepwise Covariate Modeling
• LASSO (least absolute shrinkage and selection operator)
• Single Objective Hybrid Genetic Algorithm



Covariate Search Comparison

Sherer et al 2012, JPKPD



Single-objective, hybrid genetic 
algorithm (SOHGA)

vs.
step-wise approach

• Pharmacokinetic data for Risperidone
• Identical model options / decisions

• Compare information criteria of final models
• Compare model structures
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Model structure: SOHGA vs. step-wise
Compound Final step-wise model Best SOHGA candidate

Risperidone, oral 1 with 3 component mixture on CL 2 with 2 component mixture on CL

• Extra degree of freedom
– Fix ka based on literature due to instability

• Risperidone (∆AIC = -278.1)
– 1 covariate in final stepwise model
– 5 covariates in best SOHGA candidate



An example:
• Structure: 1, 2 compartment distribution model
• Covariates: Weight on CL, V | Age on CL, V | Sex on CL, V

• Linear: 𝑇𝑇𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴 + (𝐶𝐶𝐶𝐶𝑣𝑣𝑖𝑖 − �Cov) ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝐵𝐵

• Exponential: 𝑇𝑇𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴 ∗ 𝑒𝑒
𝐶𝐶𝐶𝐶𝑣𝑣𝑖𝑖−�Cov ∗𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝐵𝐵

• Statistical: Additive, Proportional, Combined 

Example Model Search Space



Example Model Search Space

• Total number of models:
• 2*3*3*3*3*2*2*3 = 1944 possible combinations

1 vs 2 compartment

Weight on CL (None, Linear, Exponential)

Weight on V (None, Linear, Exponential)

Age on CL (None, Linear, Exponential)

Age on V (None, Linear, Exponential)

Sex on CL (None, Additive Shift)
Sex on V (None, Additive Shift)
Additive vs Proportional vs Combined Error Models



• Total number of models:
• 2*3*3*3*3*2*2*3 = 1944 possible combinations

Model NCMT Weight on 
CL

Weight on 
V

Age on CL Age on V Sex on CL Sex on V Error Model

1 1 None None None None None None Additive

2 1 Linear None None None None None Additive

3 1 Exponential None None None None None Additive

4 1 None Linear None None None None Additive

5 1 None Exponential None None None None Additive

… … … … … … … … …

1944 2 Exponential Exponential Exponential Exponential Additive Additive Combined

Example Model Search Space



Outline of Updated GA

Run candidate 
models by calling 

NONMEM

Determine the 
“fitness” of the 

model

Determine the 
next generation of 

models

Randomly select 
initial population of 

n models

Stop after 
convergence criteria 

met

Selection

Crossover

Mutation



Initial Population

• n models, or “individuals”, are randomly 
selected from the pool of all combinations

• Models are run simultaneously

Model NCMT Weight on 
CL

Weight on 
V

Age on CL Age on V Sex on CL Sex on V Error Model

83 1 Linear None Linear Exponential None Exponential Additive

225 1 Linear Exponential Exponential Linear None None Proportional

343 1 Exponential None None Linear None Linear Proportional

800 2 None Linear Exponential None Exponential None Combined

1284 2 Exponential Exponential Linear Exponential None None Additive

1491 2 Exponential None None Linear None Linear Additive



Fitness

• How to determine how “fit” a model is?
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• NONMEM objective function?



Fitness

• How to determine how “fit” a model is?
• NONMEM objective function?
• Objective function + Penalty terms

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑒𝑒𝐹𝐹𝐹𝐹 = −2𝐿𝐿𝐿𝐿 + 2 ∗ 𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃 + 20 ∗ 𝑃𝑃𝑒𝑒𝐹𝐹𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶 + 10 ∗ 𝑃𝑃𝑒𝑒𝐹𝐹𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝐶𝐶𝐶𝐶𝑣𝑣𝑃𝑃𝑃𝑃

AIC



• Tournament style selection
• Ranked selection method

• Ideal when fitness values are close 
in magnitude

for each model i
choose a random opponent model j (excluding 

i)
the more fit model wins the tournament
winner proceeds to the cross-over pool

Model Fitness

83 100

225 102

343 98

800 94

1284 103

1491 109

Initial Population

Model Fitness
Crossover Pool

Selection
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Crossover

• Mimics biological reproduction
• Combines elements of well performing 

models to produce potentially more fit 
models

• Two-point crossover 



Mode
l

Fitnes
s

NCM

T

Weight on 
CL

Weight on 
V

Age on CL Age on V Sex on CL Sex on V Error Model

800 94 2 None Linear Exponential None Exponential None Combined

343 98 1 Exponential None None Linear None Linear Proportional

Parent Chromosomes

Mode
l

Fitnes
s

NCM

T

Weight on CL Weight 
on V

Age on CL Age on V Sex on CL Sex on V Error Model

--- 2 None None None Linear None None Combined

--- 1 Exponential Linear Exponential None Exponential Linear Proportional

Progeny

Crossover



for each model i
for each gene j

mutate gene (T/F) with probability 0.05
if (mutate gene = T)

newPhenotypeIndex = sample integer from 1 to length of  phenotypes
phenotype = phenotypes[newPhenotypeIndex]

gene[j] = phenotype

Weight on 
CL

Weight on 
V

Age on CL Age on V Sex on CL Sex on V Error Model

None None None Linear None Combined

Mutate: FF FF T F

NoneAdditive 

F

Mutation



Outline of GA

Run candidate 
models by calling 

NONMEM

Determine the 
“fitness” of the 

model

Determine the 
next generation 

of models

Randomly select 
initial population of 

n models

Stop after 
convergence 
criteria met



Development of 
user interface

NONMEM 7.4
shell()

Software



Development of NONMEM Workbench 
to Implement Genetic Algorithm



• Unperturbed tumor growth trajectories of 
22 LNCAP xenograft tumors were selected 
as test dataset

Case Study: Tumor Progression Modeling



• 1584 unique models were created by the 
GA app with the combinations listed to 
the right:

Case Study: Tumor Progression Modeling

* The four IIV structures are: none, additive, proportional, and exponential.
** The three RUV structures are additive, proportional, and additive plus 
proportional.

[1] Koch G1, Walz A, Lahu G, Schropp J. Modeling of tumor growth and anticancer effects of 
combination therapy. J Pharmacokinet Pharmacodyn. 2009 Apr;36(2):179-97.



Case Study: Tumor Progression Modeling

• Based on the available computation power 
(40 available cores), run 38 models 
simultaneously.

• It took on average 4 minutes to run a 
generation.

• The algorithm found the best model by the 
15th generation

• To confirm model convergence, the system 
was allowed to continue for a total of 30 
generations.

• 250 out of 1584 unique models were run by 
the 30th generation.



Case Study: Tumor Progression Modeling

• The Koch growth model performed best for the 
xenograft tumor dataset. 

• Fitness value of 2572

• The model with the best fitness had the following 
IIV characteristics: 

• An exponential IIV model on λ0
• An exponential IIV model on λ1
• An exponential IIV model on baseline.
• The residual error model selected was additive 

plus proportional. 

• Standard step-wise approach conducted by 
blinded colleague resulted in fitness value of 
2748 (Simeoni structure) Top five fitness values for the six commonly

used growth model categories



Model Selection Results
The Koch growth model performed best for the test dataset. The model with the best 
fitness had the following IIV characteristics: a exponential IIV model on λ0; exponential 
IIV model on λ1; and exponential IIV model on baseline;. The residual error model 
selected was additive plus proportional. 

The plot of the top five fitness function for
the six commonly used growth model
categories (Koch, Simeoni, power,
Gompertz, Logistic, and exponential).

The VPC plot for the Koch model with the best fitness 
value of 2572. The red dashed lines are the predicted 
5th and 95th percentiles.



Model Selection Results
The best fitness function of the GA selected model is 2572 for the Koch model, while the typical 

approach to model building conducted by a “blinded” colleague resulted in a fitness of 2748 for a 

Simeoni model. In addition, the best Simeoni model found by GA gets a fitness function of 2602.

The VPC plot for the Koch model with the best fitness 
value of 2572. The red dashed lines are the predicted 
5th and 95th percentiles.

The VPC plot for the manual picked Simeoni model 
with the fitness value of 2748. The blue solid lines are 
the predicted 5th and 95th percentiles.



Limitations of SOHGA

• Only post-hoc visual predictive checks
• Single-objective

– Ad hoc (user defined) weighting scheme
• i.e., 10 points / parameter is χ2 = 0.0016

• Equally valid yet very different candidate 
models are possible

• Does not consider feasibility
• Could modify weighting scheme



Conclusions

• The genetic algorithm identified a mixed effect model for 
risperidone PK and tumor trajectories that had substantially 
better OFV (and converted fitness) compared with the standard 
model search strategy.

• The current app can improve the accuracy and efficiency of 
model development. An automated solution for population 
PK/PD modeling will allow modelers to focus on hypothesis 
generation and model evaluation rather than text processing 
and model execution.
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