Hybrid Genetic Algorithm Approaches to Model Selection

Mohamed Ismail, Robert R. Bies, Mark Sale
University at Buffalo
Nuventra

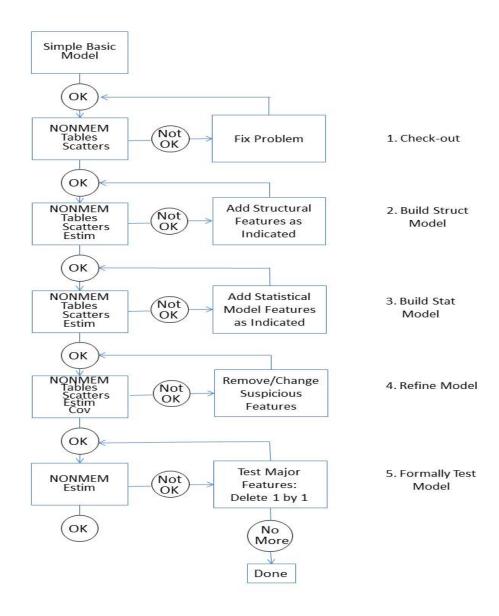


Figure 1. Diagram of model building algorithm from Volume 5 NONMEM manuals. Reproduced with permission from Icon PLC. In the original description of the algorithm, statistical features (variance terms) were added after the structure was final for practical reasons.

Local search: "step-wise" regression

- Base (covariate free) model
 - Keep known physiology in mind
 - Compare compartment structures
 - Residual error structure to minimize systematic errors
 - Inter-individual variability where identifiable
 - Lag-time or mixture models if relevant

Final model

- Baseline structure
- Single covariate forward addition
- Single covariate backward elimination

Local search: "step-wise" regression

- Base (covariate free) model
 - Keep known physiology in mind
 - Compare compartment structures
 - Residual error structure to minimize systematic errors
 - Inter-individual variability where identifiable
 - Lag-time or mixture models if relevant
- Final model
 - Baseline structure
 - Single covariate forward addition
 - Single covariate backward elimination

Wade JR, Beal SL, and Sambol NC. "Interaction between structural, statistical, and covariate model in population pharmacokinetic analysis", J of Pharmacokinetics and Biopharmaceutics, 22: 165-177, 1994.

- What are they?
 - A means of evaluating factors in a model where more than one factor can be changed at a single step.
 - Partially automated to allow a more "complete" evaluation of the full grid search space for a particular candidate model.

Approach:

- Replicate "survival of the fittest"
- Evolutionary process is imposed on the selection and "survival" of the "best" model descriptions
- Calculate an indicator of how "healthy" a particular individual model in the population is
- Utilized in multiple fields e.g. placing cell phone towers, predicting stock performance etc.

- "good" characteristics become more likely
- Efficient at finding "good" regions of solution space
- Slow to converge local "best"
- Adaptations
 - Elitism
 - Retain best candidate to next generation
 - Local search hybrid
 - Compare candidate with each model differing by 1 bit
 - Every 5 generations

- Implementation in the context of population PK modeling (Bies and Sale 2006, JPP August, Sherer Sale and Bies 2012 JPP)
- Potential models are reduced to a bit-string (base-2 number assembly) that reflects the model "genetic" code
- Each model feature is coded as a base 2 number
 - If there are 2 options the values are 0 or 1 [(0) (1)], if more than two options then one has multiple bits eg. [(0 0), (0 1), (1 0), (1 1)]
- Features are strung together to produce aforementioned bit string
- Model can be reproduced based on the bit string that results

Global optimization: genetic algorithm

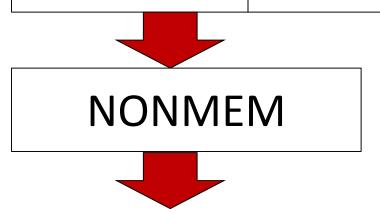
- Single-objective
 - Default composite fitness measure (initial implementation)
 - -2 x log-likelihood
 - Penalty per model variable (10 points)
 - Penalties for failure to converge (400), covariance (400), and correlation (300)

Model Selection

Residual error Compartment structure IIV on CL Weight on CL Weight on V 1 compartment No relationship No relationship Additive No relationship 1 compartment w/ lag Proportional Additive Additive Additive 2 compartments Combined Proportional Proportional **Proportional** 2 compartments w/ lag **Exponential** Exponential Exponential

Power-law

Power-law



- Model evaluation criteria
 - -2 x log-likelihood
 - Number of parameters
 - Diagnostic plots

Candidate models (N = 300 - 500)

Candidate 1.	
Compartment structure 1 compartment 1 compartment lag 2 compartments 2 compartments lag	Residual error Additive Proportional Combined
Candidate 2.	
Compartment structure 1 compartment 1 compartment lag 2 compartments 2 compartments lag	Residual error Additive Proportional Combined
Candidate 3.	
Compartment structure 1 compartment 1 compartment lag 2 compartments 2 compartments lag	Residual error Additive Proportional Combined

Candidate models (N = 300 - 500)

Candidate 1. Fitness = 1,000			
Compartment structure 1 compartment 1 compartment lag 2 compartments 2 compartments lag	Residual error Additive Proportional Combined		
Candidate 2. Fitness = 1,200			
Compartment structure 1 compartment 1 compartment lag 2 compartments 2 compartments lag	Residual error Additive Proportional Combined		
Candidate 3. Fitness = 1,050			
Compartment structure 1 compartment 1 compartment lag 2 compartments 2 compartments lag 2 compartments			

Evaluate fitness using NONMEM

Candidate models (N = 300 - 500)

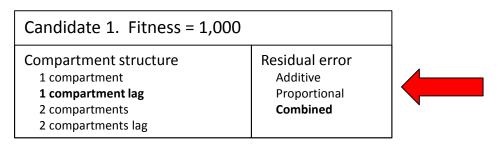
Candidate 1. Fitness = 1,000	0	
Compartment structure 1 compartment 1 compartment lag 2 compartments 2 compartments lag	Residual error Additive Proportional Combined	
Candidate 2. Fitness = 1,200		
Compartment structure 1 compartment 1 compartment lag 2 compartments 2 compartments lag	Residual error Additive Proportional Combined	
Candidate 3. Fitness = 1,050)	
Compartment structure 1 compartment 1 compartment lag 2 compartments 2 compartments lag 2 compartments		

Evaluate fitness using NONMEM

10

0 1

Binary representation of model decisions



01

10

Candidate 3. Fitness = 1,050 Compartment structure 1 compartment 1 compartment lag 2 compartments Residual error Additive Proportional Combined

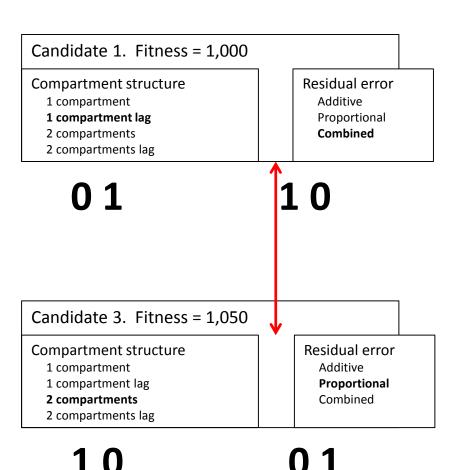
Reproduction:

Randomly select two models from the candidate pool based on normalized fitness

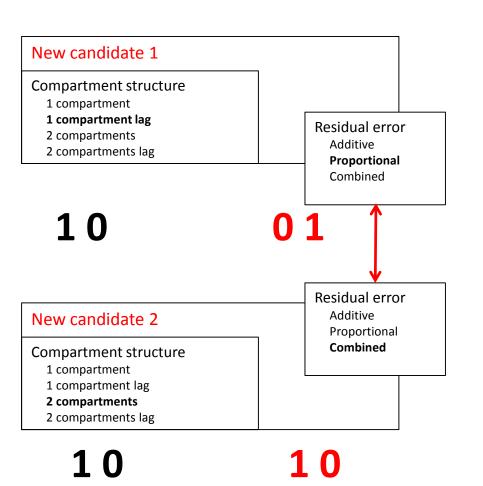
10

2 compartments lag

01



<u>Crossover</u>: Randomly select a model location



Crossover:

Randomly select a model location

Swap model information with probability $P_{crossover}$

New candidate 1

Compartment structure

1 compartment

1 compartment lag

2 compartments

2 compartments lag

Residual error
Additive
Proportional

Proportiona Combined

10

00

Mutation:

Randomly select a model location

New candidate 2

Compartment structure

1 compartment

1 compartment lag

2 compartments

2 compartments lag

Residual error

Additive

Proportional

Combined

1 (

Change model information with probability $P_{mutation}$

New candidate models

New candidate 1.	
Compartment structure 1 compartment 1 compartment lag 2 compartments 2 compartments lag	Residual error Additive Proportional Combined
New candidate 2.	
Compartment structure 1 compartment 1 compartment lag 2 compartments 2 compartments	Residual error Additive Proportional Combined

Repeat reproduction, crossover, and mutation operations until a new candidate pool is created

Repeat process for desired number of 30-50 generations

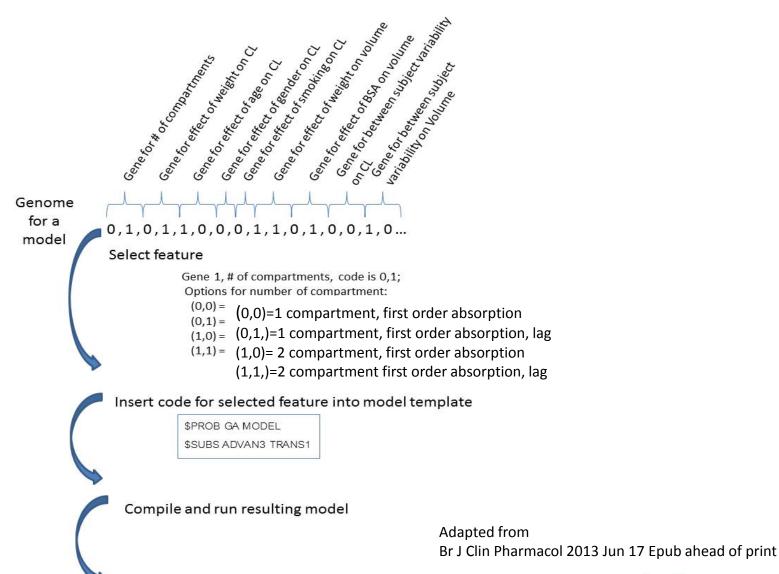


Figure 3. Coding of model features and translation into a model. If only two options are examined for a feature (e.g., the effect of Gender on Clearance) only 1 bit will be needed for that gene. If more than two options are examined (e.g., 4 for the basic structure, number of compartments) more than 1 bit is required for that gene. The final genome for each model is constructed by concatenating all the genes together into a bit string.

Covariate Search Comparison

- Evaluation of performance of multiple methods
 - True model simulated with relatively dense sampling
 - Exponential relationship with BMI and CrCL on clearance
 - Exponential relationship BSA and Sex on volume
 - Compared:
 - Stepwise Covariate Modeling
 - LASSO (least absolute shrinkage and selection operator)
 - Single Objective Hybrid Genetic Algorithm

Covariate Search Comparison

Table 5 True and spurious covariate relationships identified in the simulated data by the automated stepwise covariate modeling, Lasso, and SOHGA approaches and the models fit characteristics

Method	"True" covaria	"True" covariates		Spurious covariates	
	Clearance	Volume of distribution	Clearance	Volume of distribution	function value
Original model	BMI, CRCL	BSA, Sex	-	-	6101.2
Stepwise covariate modeling (SCM): p value for inclusion, p value for elimination					
0.05, 0.05	BMI, CRCL	Sex	WT	HT, CV1	6085.9
0.05, 0.01	BMI, CRCL	Sex	-	HT, CV1	6091.1
0.10, 0.01	BMI, CRCL	Sex	-	HT, CV1	6091.1
Lasso model	BMI, CRCL	-	_	_	6254.2
Single-objective, hybrid genetic algorithm					
3.84 point penalty per parameter	BMI, CRCL	Sex	BSA	HT, CV1	6086.7
10 point penalty per parameter	BMI, CRCL	Sex	-	HT	6097.9

BMI body mass index, BSA body surface area, CRCL creatinine clearance, CVI unrelated covariate 1, HT height, WT weight

Single-objective, hybrid genetic algorithm (SOHGA) vs. step-wise approach

- Pharmacokinetic data for Risperidone
 - Identical model options / decisions
- Compare information criteria of final models
 - Compare model structures

Compound	Administration method	Number of patients	Number of concentration measurements
CATIE			
Risperidone	Oral	490	1,236

Compound	Administration	Number of patients	Number of concentration
	method		measurements
CATIE			
Risperidone	Oral	490	1,236

	NONMEM model structures tested	First-order (FO) or first-order conditional (FOCE) estimation	Number of covariates collected
Risperidone, oral	ADVAN2, TRANS2	FO	9
	ADVAN4, TRANS4		
	(with 1, 2, or 3 clearance		
	subpopulations)		

Compound	Administration method	Number of patients	Number of concentration measurements
CATIE			
Risperidone	Oral	490	1,236

	NONMEM model structures tested	First-order (FO) or first-order conditional (FOCE) estimation	Number of covariates collected
Risperidone, oral	ADVAN2, TRANS2	FO	9
	ADVAN4, TRANS4		
	(with 1, 2, or 3 clearance		
	subpopulations)		

	Convergence		Covarian (condition	•
	Final step-wise model	Best SOHGA candidate	Final step-wise model	Best SOHGA candidate
Risperidone, oral	Required fixing K _a early in model building process	Successful	Successful (60)	Successful (1.17x10 ⁶)

Compound	Administration method	Number of patients	Number of concentration measurements
CATIE	ou		modedii omone
Risperidone	Oral	490	1,236

	NONMEM model structures tested	First-order (FO) or first-order conditional (FOCE) estimation	Number of covariates collected
Risperidone, oral	ADVAN2, TRANS2	FO	9
	ADVAN4, TRANS4		
	(with 1, 2, or 3 clearance		
	subpopulations)		

	Convergenc	e	Covariance step (condition number)		
	Final step-wise model	Best SOHGA candidate	Final step-wise model	Best SOHGA candidate	
Risperidone, oral	Required fixing K _a early in model building process	Successful	Successful (60)	Successful (1.17x10 ⁶)	

Compound	Final stepwise model	Best SOHGA candidate model	AIC _{SOHGA} – AIC _{stepwise}
Risperidone, oral	AIC = 5,131.1	AIC = 4,853.0	-278.1

Model structure: SOHGA vs. step-wise

Compound	Final step-wise model	Best SOHGA candidate	
Risperidone, oral	1 with 3 component mixture on CL	2 with 2 component mixture on CL	

- Extra degree of freedom
 - Fix k_a based on literature due to instability
 - Risperidone (\triangle AIC = -278.1)
 - 1 covariate in final stepwise model
 - 5 covariates in best SOHGA candidate

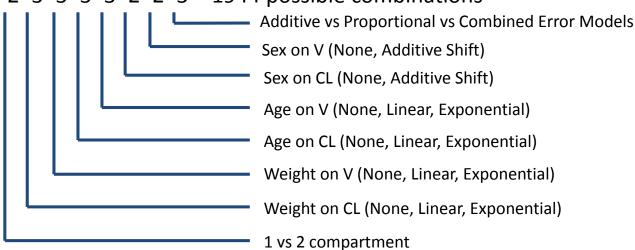
Example Model Search Space

An example:

- Structure: 1, 2 compartment distribution model
- Covariates: Weight on CL, V | Age on CL, V | Sex on CL, V
 - Linear: $TV_{Param} = THETA_A + ((Cov_i \widehat{Cov}) * THETA_B)$
 - Exponential: $TV_{Param} = THETA_A * e^{(Cov_i \widehat{Cov}) * THETA_B}$
- Statistical: Additive, Proportional, Combined

Example Model Search Space

- Total number of models:
 - 2*3*3*3*3*2*2*3 = 1944 possible combinations

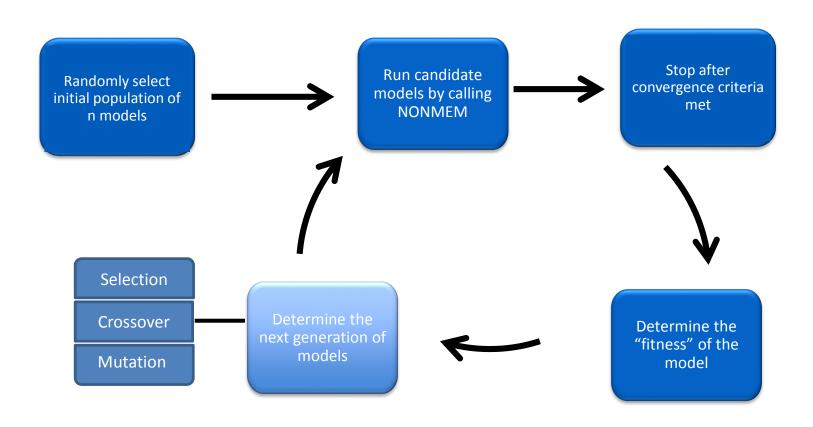


Example Model Search Space

- Total number of models:
 - 2*3*3*3*3*2*2*3 = 1944 possible combinations

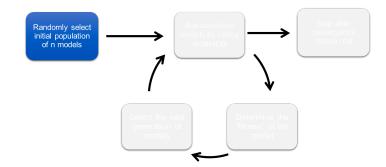
Model	N _{CMT}	Weight on CL	Weight on V	Age on CL	Age on V	Sex on CL	Sex on V	Error Model
1	1	None	None	None	None	None	None	Additive
2	1	Linear	None	None	None	None	None	Additive
3	1	Exponential	None	None	None	None	None	Additive
4	1	None	Linear	None	None	None	None	Additive
5	1	None	Exponential	None	None	None	None	Additive
•••				•••			•••	
1944	2	Exponential	Exponential	Exponential	Exponential	Additive	Additive	Combined

Outline of Updated GA



Initial Population

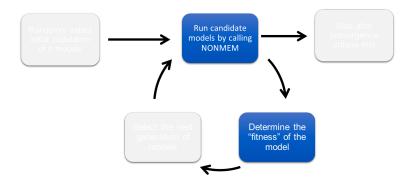
- n models, or "individuals", are randomly selected from the pool of all combinations
- Models are run simultaneously



Model	N _{CMT}	Weight on CL	Weight on V	Age on CL	Age on V	Sex on CL	Sex on V	Error Model
83	1	Linear	None	Linear	Exponential	None	Exponential	Additive
225	1	Linear	Exponential	Exponential	Linear	None	None	Proportional
343	1	Exponential	None	None	Linear	None	Linear	Proportional
800	2	None	Linear	Exponential	None	Exponential	None	Combined
1284	2	Exponential	Exponential	Linear	Exponential	None	None	Additive
1491	2	Exponential	None	None	Linear	None	Linear	Additive

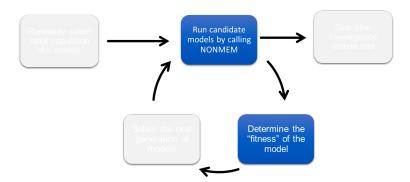
Fitness

• How to determine how "fit" a model is?



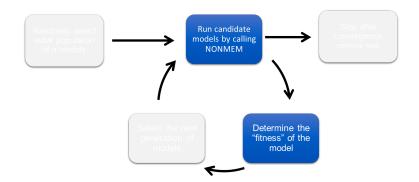
Fitness

- How to determine how "fit" a model is?
- NONMEM objective function?



Fitness

- How to determine how "fit" a model is?
- NONMEM objective function?
- Objective function + Penalty terms

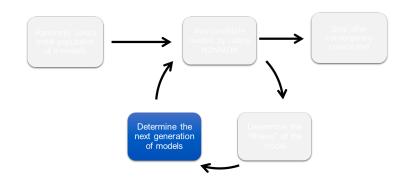


$$Fitness = -2LL + 2 * N_{Par} + 20 * Penalty_{Converge} + 10 * Penalty_{Covar}$$

$$AIC$$

Selection

- Tournament style selection
- Ranked selection method
 - Ideal when fitness values are close in magnitude



for each model i
choose a random opponent model j (excluding
i)
the more fit model wins the tournament
winner proceeds to the cross-over pool

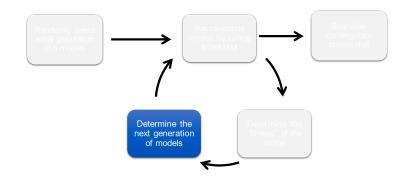
Initial Population

Model	Fitness
83	100
225	102
343	98
800	94
1284	103
1491	109

Crossover Pool

Model	Fitness

- Tournament style selection
- Ranked selection method
 - Ideal when fitness values are close in magnitude



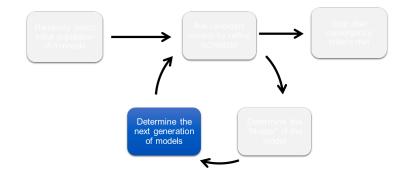
for each model i
choose a random opponent model j (excluding
i)
the more fit model wins the tournament
winner proceeds to the cross-over pool

Initial Population

Model	Fitness	
83	100	
225	102	
343	98	
800	94	4
1284	103	
1491	109	

Model	Fitness
800	94

- Tournament style selection
- Ranked selection method
 - Ideal when fitness values are close in magnitude



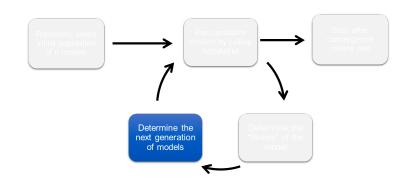
for each model i
choose a random opponent model j (excluding
i)
the more fit model wins the tournament
winner proceeds to the cross-over pool

Initial Population

	Model	Fitness
	83	100
	225	102
•	343	98
	800	94
	1284	103
	1491	109

Model	Fitness
800	94
225	102

- Tournament style selection
- Ranked selection method
 - Ideal when fitness values are close in magnitude



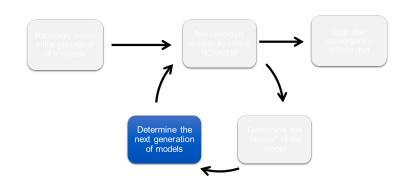
for each model i
choose a random opponent model j (excluding
i)
the more fit model wins the tournament
winner proceeds to the cross-over pool

Initial Population

Model	Fitness					
83	100					
225	102					
343	98					
800	94					
1284	103					
1491	109					

Model	Fitness
800	94
225	102
343	98
800	94

- Tournament style selection
- Ranked selection method
 - Ideal when fitness values are close in magnitude



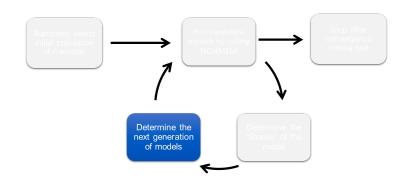
for each model i
choose a random opponent model j (excluding
i)
the more fit model wins the tournament
winner proceeds to the cross-over pool

Initial Population

Model	Fitness
83	100
225	102
343	98
800	94
1284	103
1491	109

Model	Fitness
800	94
225	102
343	98
800	94
83	100

- Tournament style selection
- Ranked selection method
 - Ideal when fitness values are close in magnitude



for each model i
choose a random opponent model j (excluding
i)
the more fit model wins the tournament
winner proceeds to the cross-over pool

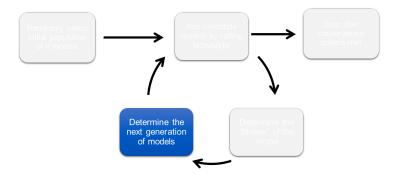
Initial Population

Model	Fitness	
83	100	
225	102	
343	98	•
800	94	
1284	103	
1491	109	

Model	Fitness
800	94
225	102
343	98
800	94
83	100
343	98

Crossover

- Mimics biological reproduction
- Combines elements of well performing models to produce potentially more fit models
- Two-point crossover



Crossover

Parent Chromosomes

Mode I	Fitnes s	N _{CM}	Weight on CL	Weight on V	Age on CL	Age on V	Sex on CL	Sex on V	Error Model
800	94	2	None	Linear	Exponential	None	Exponential	None	Combined
343	98	1	Exponential	None	None	Linear	None	Linear	Proportional

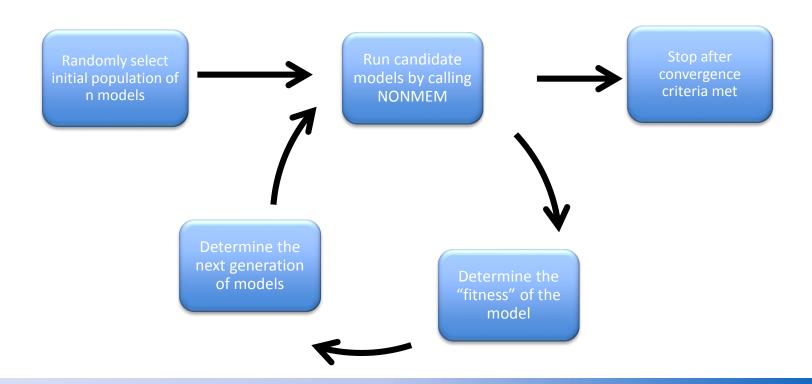
Mode I	Fitnes s	N _{CM}	Weight on CL	Weight on V	Age on CL	Age on V	Sex on CL	Sex on V	Error Model
		2	None	None	None	Linear	None	None	Combined
		1	Exponential	Linear	Exponential	None	Exponential	Linear	Proportional

Mutation

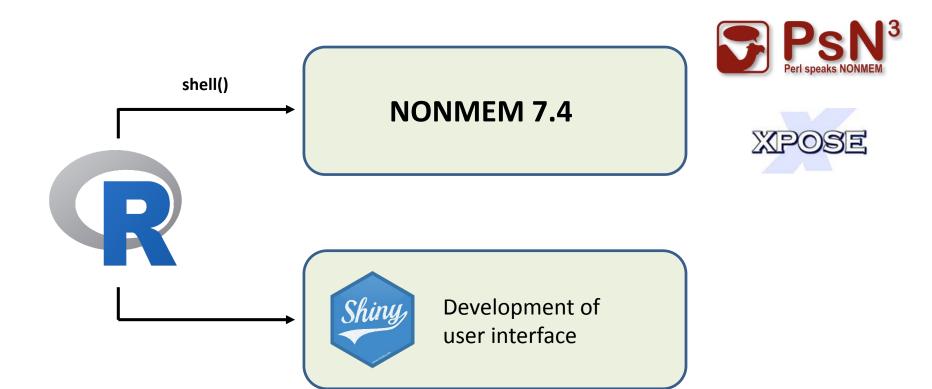
```
for each model i for each gene j mutate gene (T/F) with probability 0.05 if (mutate gene = T) newPhenotypeIndex = sample integer from 1 to length of phenotypes phenotype = phenotypes [newPhenotypeIndex] gene[j] = phenotype
```

Mutate:	F	F	F	F	Т	F	F
	Weight on CL	Weight on V	Age on CL	Age on V	Sex on CL	Sex on V	Error Model
	None	None	None	Linear	AdNotrinee	None	Combined

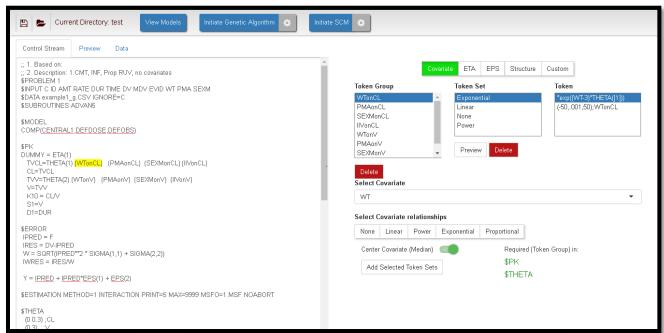
Outline of GA



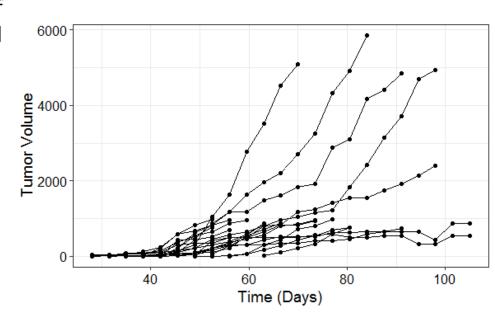
Software



Development of NONMEM Workbench to Implement Genetic Algorithm



 Unperturbed tumor growth trajectories of 22 LNCAP xenograft tumors were selected as test dataset



 1584 unique models were created by the GA app with the combinations listed to the right:

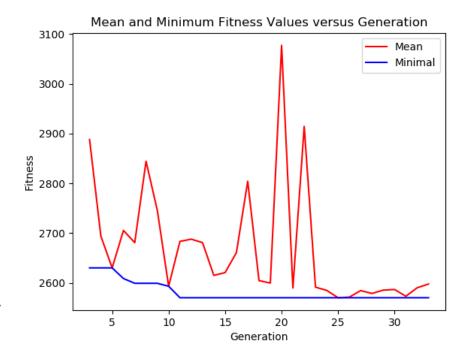
Tumor Growth Model	Equation	# of θ	# of IIV per $ heta^*$	# of RUV**	Number of Unique models
Exponential	$\frac{dV}{dt} = \mathbf{\lambda}_0 \times V$	2	4	3	$4^2 \times 3 = 48$
Power	$\frac{dV}{dt} = \lambda_0 \times V^{\gamma}$	3	4	3	$4^3 \times 3 = 192$
Logistic	$\frac{dV}{dt} = \lambda_0 \times V \times (1 - \frac{V}{T_{max}})$	3	4	3	$4^3 \times 3 = 192$
Gompertz	$\frac{dV}{dt} = \lambda_0 \times V \times \log\left(\frac{TUM_{max}}{V}\right)$	3	4	3	$4^3 \times 3 = 192$
Simeoni	$\frac{dV}{dt} = \frac{\mathbf{\lambda}_0 \times V}{(1 + (\frac{\mathbf{\lambda}_0}{\mathbf{\lambda}_1} \times V))^{\psi})^{\frac{1}{\psi}}}$	4	4	3	$4^4 \times 3 = 768$
Koch [1]	$\frac{dV}{dt} = \frac{\mathbf{\lambda}_0 \times V \times 2 \times \mathbf{\lambda}_1}{(\mathbf{\lambda}_1 + 2 \times \mathbf{\lambda}_0 \times V)}$	3	4	3	$4^3 \times 3 = 192$
					Sum: 1584

^{*} The four IIV structures are: none, additive, proportional, and exponential.

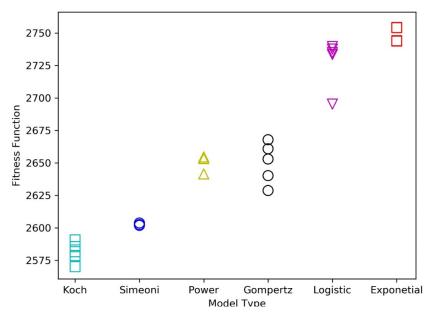
^{**} The three RUV structures are additive, proportional, and additive plus proportional.

^[1] Koch G1, Walz A, Lahu G, Schropp J. Modeling of tumor growth and anticancer effects of combination therapy. J Pharmacokinet Pharmacodyn. 2009 Apr;36(2):179-97.

- Based on the available computation power (40 available cores), run 38 models simultaneously.
- It took on average 4 minutes to run a generation.
- The algorithm found the best model by the
 15th generation
- To confirm model convergence, the system was allowed to continue for a total of 30 generations.
- 250 out of 1584 unique models were run by the 30th generation.



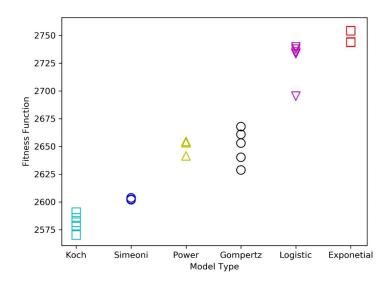
- The Koch growth model performed best for the xenograft tumor dataset.
 - Fitness value of 2572
- The model with the best fitness had the following IIV characteristics:
 - An exponential IIV model on λ0
 - An exponential IIV model on λ1
 - An exponential IIV model on baseline.
 - The residual error model selected was additive plus proportional.
- Standard step-wise approach conducted by blinded colleague resulted in fitness value of 2748 (Simeoni structure)

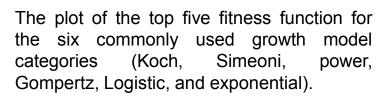


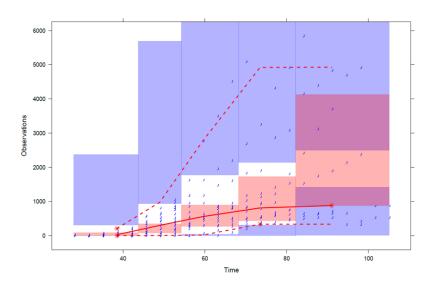
Top five fitness values for the six commonly used growth model categories

Model Selection Results

The Koch growth model performed best for the test dataset. The model with the best fitness had the following IIV characteristics: a exponential IIV model on $\lambda 0$; exponential IIV model on $\lambda 1$; and exponential IIV model on baseline;. The residual error model selected was additive plus proportional.



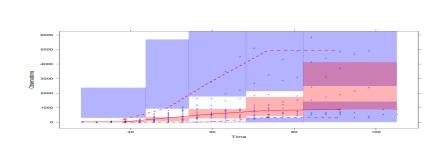




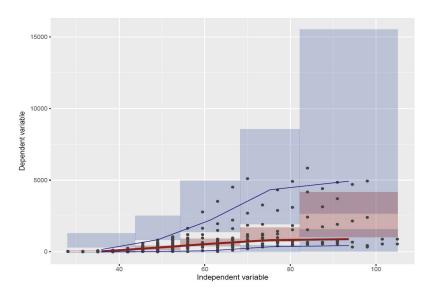
The VPC plot for the Koch model with the best fitness value of 2572. The red dashed lines are the predicted 5th and 95th percentiles.

Model Selection Results

The best fitness function of the GA selected model is 2572 for the Koch model, while the typical approach to model building conducted by a "blinded" colleague resulted in a fitness of 2748 for a Simeoni model. In addition, the best Simeoni model found by GA gets a fitness function of 2602.



The VPC plot for the Koch model with the best fitness value of 2572. The red dashed lines are the predicted 5th and 95th percentiles.



The VPC plot for the manual picked Simeoni model with the fitness value of 2748. The blue solid lines are the predicted 5th and 95th percentiles.

Limitations of SOHGA

- Only post-hoc visual predictive checks
- Single-objective
 - Ad hoc (user defined) weighting scheme
 - i.e., 10 points / parameter is $\chi^2 = 0.0016$
- Equally valid yet very different candidate models are possible
- Does not consider feasibility
 - Could modify weighting scheme

Conclusions

- The genetic algorithm identified a mixed effect model for risperidone PK and tumor trajectories that had substantially better OFV (and converted fitness) compared with the standard model search strategy.
- The current app can improve the accuracy and efficiency of model development. An automated solution for population PK/PD modeling will allow modelers to focus on hypothesis generation and model evaluation rather than text processing and model execution.

Acknowledgements

- Mark Sale, Nuventra
- Mohamed Ismail, AbbVie and University at Buffalo
- Sihang Liu, University at Buffalo
- Nikhil Pillai, University at Buffalo
- Eric Sherer, Louisiana Technological University
- Risperidone
 - Bruce G. Pollock, University of Toronto
 - Jeffrey A. Lieberman, Columbia University
 - Stephen R. Marder, UCLA
- Tumor Trajectories
 - Beth Pflug, Roswell Park Cancer Center, Buffalo