MIDD: VACCINE R&D GETS A SHOT IN THE ARM FROM PHARMACOMETRICS

(A.K.A. "VACCINES ARE NOT IMMUNE TO THE CHARMS OF MODELING AND SIMULATION") ROSA MIDD Webinar

January 22, 2020 Jeff Sachs

Pharmacokinetics, Pharmacodynamics, and Drug Metabolism – Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, NJ, USA

Many Diseases Have Been Prevented

INVENTING FOR LIFE

Polio

Historical Perspective: Smallpox

Bazin, H., Vaccination: a History

Don't Count Your Children Until The Measles Have Come Through – African saying

*MMWR / November 11, 2016, 65 (44) 1228-1233

The Modern Toll of Measles

EU region 2018 83,000 cases 50,000 hospitalized 72 deaths¹

EU region 1Jan18 – 8May19 100,000 cases >90 deaths²

Philippines 1Q 2019 33,000 cases > 450 deaths³

NVENTING FOR LIFE

¹ European Region statistics. From "Measles in Europe: record number of both sick and immunized," WHO Regional Office for Europe, Copenhagen, 7 February 2019 ² http://www.euro.who.int/en/media-centre/sections/press-releases/2019/over-100-000-people-sick-with-measles-in-14-months-with-measles-cases-at-an-alarming-level-in-the-europeanregion.-who-scales-up-response ³ https://www.npr.org/2019/05/19/724747890/measles-outbreak-in-the-philippines ICD

7

Health and Economic Impact of Preventing Disease with Vaccination...

Just One Country: USA Just One Year's Cohort: Children born in 2001

Adapted from: Zhou F et al. Arch Pediatr Adolesc Med. 2005;159:1136–1144.

All costs are given in US dollars (USD).

Direct program costs included vaccines, administration, parent travel, and direct costs for the management of adverse events. Societal costs included direct program costs and parent time lost for vaccination and the management of adverse events.

About 50 Vaccines Developed to Date

Adapted from: IOM (Institute of Medicine), Ranking vaccines: A prioritization framework: Phase I: Demonstration of concept and a software blueprint. Washington, DC, *The National Academies Press*, 2012, p. 19.

...But Expensive and Takes Too Long

- Cost of a vaccine from discovery through Ph. 2a:
 \$0.4 Billion (range \$0.1-1B)*
- **Time** for a vaccine from discovery through Ph. 2a: **7 years** (range 4-15 years)*
- Vaccines too often in development for ~20 years

*Gouglas, D., TT Le, et al., Estimating the cost of vaccine development against epidemic infectious diseases: a cost minimisation study, Lancet Glob. Health, 2018;6:e1386–96

Vaccine (for today): Active Stimulator Of Immune Memory and Antibody Production for Prevention of an Infectious Disease.

What is Special About Vaccines and Pharmacometrics?

Why were Vaccines not on our radar??

- PK* Rare
- Little DDI* (concomitant vaccination)
- Traditional clinical pharmacology analyses not typical
 - except safety & Tox
- \rightarrow not part of our traditional purview.

*PK: pharmacokinetics, DDI: drug-drug interaction

The BASICS: VACCINES and IMMUNOLOGY

Active Immunization – How it works

- Measuring Immune response: "Titer" ~ Target engagement
 - o Quantity and quality of antibodies
- More is better

Immunogenicity ≠ efficacy

Overview of PMX and Vax

Rich History of Published Work (not a complete list!)

Phase	Key Question	Method(s)	Decision(s) / Impact
1/2	What N (# subjects) will let us tell if vaccines A and B are different?	Phenomenological model Clinical trial simulation	Trial design, program strategy for sequence of trials
	Wrong Question!		
			MSD 21

INVENTING FOR LIFE

What can we learn about dose-level & formulation impact on immunogenicity? How can we use past data to inform the trial design? How can we integrate data across trials in the future?

How many arms (and which ones) were needed to address information desired in the first question?

Number of arms the team had planned:

Trial Design by Phenomenological Simulation

Thanks: Kapil Mayawala, Jon Hartzel

MSD

INVENTING FOR LIFE

Trial Design by Phenomenological Simulation

Phase	Key Question	Method(s)	Decision(s) / Impact
2	What disease assay(s) should we use and how often?	QSP and Bayesian probabilistic	Saved \$, increased POS Choice of assay, frequency
	 Measuring vaccine efficacy requires counting number of disease cases. What happens if the counting (assay) process 		
	is not perfect?		
	Vvnat assays	s should we use al	nd now often?
			MSD 25

INVENTING FOR LIFE

10% of placebo subjects get sick,

3% vaccinated subjects get sick

Efficacy = (10% - 3%) / 10% = 0.7 = "70% efficacy"

Typically need tens/hundred cases (Ph. 2/3, resp.)
 → No efficacy information until Ph. 2b/3

Placebo

Vaccinated

INVENTING FOR LIFE

Phase	Key Question	Method(s)	Decision(s) / Impact
(na)	Can we model enough of the immune system to be predictive?	QSP	Capability development
	How ca data to and to level or	n we use preclini help design vacc oredict the right of regimen?	ical cines dose-

Basic Model of Some Immune System Components

Chen et al., CPT PSP 2014

Thanks: Jeff Perley, Josiah Ryman

31

Basic Model of Some Immune System Components

Chen et al., CPT PSP 2014

Thanks: Jeff Perley, Josiah Ryman

32

Phase	Key Question	Method(s)	Decision(s) / Impact
4	How many doses of vaccine are needed to confer lasting protection?	QSP	Suggests single dose could provide protective immune memory Mechanistic insight
	Can we	e leverage mecha	nistic
	inform	nation to help info	orm
		regimen?	
			INVENTING FOR LIFE 33

Hepatitis B: Models for Antigen, Anti-viral Titer and Immune Memory

- 10,815 anti-viral titres in 1,923 patients
- 2-4 vaccinations in 6-48 month period
- No Immune memory (Mi) or antigen (Vi) measurements

Wilson JN, Nokes DJ, Medley GF, Shouval D. Mathematical model of the antibody response to hepatitis B vaccines: implications for reduced schedules. Vaccine. 25(18):3705-12. 2007

• The model demonstrates **significant differences between different vaccines in** both the **time** taken to generate immune memory **and** the **amount of memory** generated.

Authors' Conclusions

• The model provides theoretical support for the hypothesis that a **single vaccine dose** can generate protective immune memory.

Wilson JN, Nokes DJ, Medley GF, Shouval D. Mathematical model of the antibody response to hepatitis B vaccines: implications for reduced schedules. Vaccine. 25(18):3705-12. 2007

Wilson JN, Nokes DJ, Medley GF, Shouval D. Mathematical model of the antibody response to hepatitis B vaccines: implications for reduced schedules. Vaccine. 25(18):3705-12. 2007

Phase	Key Question	Method(s)	Decision(s) / Impact
	Can we inform regin	leverage mechan nation to help info men in Ph. 2 trial	nistic orm ?
2	Which regimens should be tested in Ph. 2 Trial? (Regimen: dose-level, # doses, timing)	QSP	Ph. 2 Trial Design: add new dose level and different regimen
			ST NSD INVENTING FOR LIFE 37

Trial Design by QSP

Thanks: Jeff Perley, Guido Jajamovich, Jos Lommerse (Certara), April Barbour

- Predictions qualified with Ph1 data 😊
- Changed Ph. 2 design to incorporate a lower dose-level, additional regimen

Trial Design by QSP

Thanks: Jeff Perley, Guido Jajamovich, Jos Lommerse (Certara), April Barbour

Phase	Key Question	Method(s)	Decision(s) / Impact	
	Can w mitigatio	ve increase PUS	Dy	
	low incidence rate?			
2,3	Do we have adequate evidence of efficacy if some pathogens have too few cases?	PoDBA (= Probability of Disease Bayesian Analysis)	Novel Ph. 3 endpoint GNG test criteria	
			MSD	40

INVENTING FOR LIFE

PoDBA Method

 Estimate relationship between probability of disease and antibody titer values based on titer values of subjects with and without disease

 Use this relationship and titer values of control and vaccine groups to estimate vaccine efficacy and its confidence interval

Method: Estimating the "Probability of Disease" Curve

- Use titer values measured in infected and non-infected subjects
- Assume that the relationship between titer values and probability of disease follows a sigmoidal curve
- Estimate the parameters of the curve and their confidence intervals using standard statistical method (Maximum likelihood)

PoDBA -> Novel Endpoint (example from a program plan, not agency guidance on different approaches to basis of licensure)

Phase	Key Question	Method(s)	Decision(s) / Impact
	Can we l and early	everage literature	e data / data
	to drive ba	early, objective, ased decisions?	risk-
2	Is our immunogenicity likely to provide the necessary protection, and at what dose-level?	NLME+ MBMA + PoDBA (Comparator modeling + PoDBA)	No-go, GO, Dose-selection
			44

INVENTING FOR LIFE

Modeling Overview for Supporting Both Go and No-Go Decisions

Visualization Has to Tie Together Data for Different Disease Levels and Populations

Visualization Has to Tie Together Data for Different Disease Levels and Populations

Visualization Has to Tie Together Data for Different Disease Levels and Populations

INVENTING FOR LIFE

Phase	Key Question	Method(s)	Decision(s) / Impact
2	What N (# subjects) will let us tell if vaccines A and B are different?	Phenomenological model Clinical trial simulation	Trial design, program strategy for sequence of trials
2	What immunogenicity assay(s) should we use and how often?	QSP and Bayesian probabilistic	Saved \$, increased POS Choice of assay, frequency
(na)	Can we model enough of the immune system to be predictive?	QSP	Capability development
4	How many doses of vaccine are needed to confer lasting protection?	QSP	Suggests 1 less dose Mechanistic insight
2	Which regimens should be tested in Ph. 2 Trial? (Regimen: dose-level, # doses, timing)	QSP	Ph. 2 Trial Design: add new dose level and different regimen
2,3	Do we have adequate evidence of efficacy if some pathogens have too few cases?	PoDBA (= Probability of Disease Bayesian Analysis)	Novel Ph. 3 endpoint GNG test criteria
2	Is our immunogenicity likely to provide the necessary protection, and at what dose-level?	NLME+ MBMA + PoDBA (Comparator modeling + PoDBA)	No-go, GO, Dose-selection

Vaccine Pharmacometrics

Today

- Simulation-based trial design to add/save trial arms or subjects
- QSP modeling of the immune system as a platform
- Using dose, regimen, formulation to predict immunogenicity/efficacy
- Translation between preclinical and clinical immunogenicity
- Leveraging literature data
- Establishing new trial endpoints
- Understanding covariate (age, genetics, geography,...) effects on immunogenicity & efficacy

Don't forget also...

- Predicting most effective vaccine platform by mechanistic modeling
- Understanding or predicting safety/toxicity
- Predicting the best route of administration
- Leveraging results of real-world trials
- Prioritizing vaccine candidates
- Prioritizing pathogen candidates

CONCLUSION

"An ounce of prevention is worth a pound of cure"

Source: https://www.ag.ndsu.edu/news/columns/beeftalk/beeftalk-an-ounce-of-prevention-is-worth-a-pound-of-cure/.

"An ounce of prevention is worth a pound of cure" Benjamin Franklin

"An ounce of prevention is worth a pound of cure" Benjamin Franklin

- Vaccines are a key component of public health
- Pharmacometrics useful for vaccine discovery & development
 QSP, PK/PD, Bayesian, comparator, translational,...
- These (and other) methods have impacted decisions
- Pharmacometrics (we) can impact human health by helping inform vaccine discovery & development
 - Assumptions, study design & strategy, data interpretation

Acknowledgements

- Subjects (& their Parents)
- MSD
 - Discovery & Development Teams, PPDM-Bioanalytics
 - Vaxmodsim team+:

Luzelena Caro, Carolyn Cho, Julie Dudasova, Pavel Fiser, Jon Hartzel, Sean Hayes, Justina Ivanauskaite, Regina Laube, Brian Maas, Nitin Mehrotra, Jeff Perley, Seth Robey, Radha Railkar, Daniel Rosenbloom, Josiah Ryman

- Paula Annunziato and Daria Hazuda
- Dinesh de Alwis & Vikram Sinha, Nancy Agrawal
- PPDM-QP2
- Mike Pish & co. @ MCS
- Skip Irvine, John Grabenstein
- Also...
 - Certara, Inc: Jos Lommerse, Nele Mueller-Plock, Michelle Green, Amy Cheung many others
 - Former MSD: Matt Wiener, Sandy Allerheiligen

Attributes of Vaccine Development

- 1. Stringent safety
- 2. Trial size and duration (event frequency)
- 3. Efficacy = proportional risk reduction
- 4. Surrogate marker ("Correlate of Protection," a.k.a. "CoP") challenges
- 5. Lack of translational models
- 6. Need arm with placebo or active comparator
- 7. Complex biologics, need to be transportable stable, usable

CoP Challenges: Knowledge, Time, Resources, Variability...

Variability in CoP predictive
 power?
 BSV: between-subject

variability

power? BSV Varia

58