

Jonathan Allen, Ph.D. Informatics Thrust Leader allen99@IInI.gov https://atomscience.org/ July 15, 2020

An Integrated Machine Learning Framework for Novel Small Molecule Drug Design

Roadmap of Talk

- Problem statement and introduction to ATOM Consortium
- Overview of ATOM computational platform
- Data and Data-Driven Modeling Pipeline
- Recent applications into systems modeling
- Applications of the small molecule generative design loop (GMD)

Current drug discovery: long, costly, high failure Goal: transform early drug discovery to get drugs to patients faster

- 33% of total cost of medicine development
- Clinical success only ~12%, indicating poor translation in patients

Source: http://www.nature.com/nrd/journal/v9/n3/pdf/nrd3078.pdf

ATOM is an open public-private partnership for accelerating drug discovery

Goals

- Accelerate the drug discovery process
- Improve success rate in translation to patients

Approach

- Computation-driven drug design, supported and validated by targeted experiments
- Data-sharing to build models using everyone's data

Product

• An open-source platform for active-learning based molecular design and optimization

Status

- Shared collaboration space at Mission Bay, SF
- 25 FTEs engaged across the partners
- R&D started February 2018

ATOM

Accelerating Therapeutics for Opportunities in Medicine (ATOM)

ATOM provides an open platform, models, and data for a rapidly diversifying drug development ecosystem

University drug development teams

- Open tools to develop and optimize molecules
- Advancing further up the development value chain
- Education and training in new approaches

Pharma and biotech

- Precompetitive design optimization technology
- Open R&D on emerging technology, methods, and workflows

ATOM

- Open platform, models, and data
- Public-private
 R&D community

Computing technology community

- Complex problems challenging and extending AI and HPC capabilities
- Scalable and supported approaches

Neglected disease communities

- Platform and research for drug design projects for public good
- New partnerships to expand the open research community
- Broad access to data

Government programs advancing public health and biosecurity

- Open platform supporting rapid response programs
- Public-private partnership programs
- Support for interagency collaboration

Building new predictive models Machine learning frameworks

The ATOM Platform Active Learning Drug Discovery Framework

The ATOM Platform Active Learning Drug Discovery Framework

ATOM

To build these workflows ATOM is focusing on several technical challenges

Expanding our data foundations Curated model-ready datasets

ATOM has built models for hundreds of pharmaceutical data sets

 $\overline{\wedge \top \cap \mathbb{N}}$

The ATOM data strategy

- 1. Work with available public data sources to build baseline safety and PK models
- 2. Expand databases using commercial data sources where required
- 3. Establish and enable open data partnerships to grow public data sources
- 4. Collect targeted data sets to fill gaps and emerging needs in open data

We're working with multiple data sources

CHEMBL – Manually curated repository of bioactive molecules

- Sponsored by European Bioinformatics Institute (EMBL-EBI)
- 1.9M compounds, 11K targets

Excape-DB – Exascale Compound Activity Prediction

- EU program on predictive modeling for compound activities
- 1M compounds, 1.7K targets

Excelra GOSTAR

- Commercial database
- 7.8M compounds, 9.3K targets
- Derived data products (e.g. models) are open

Drug Target Commons – An open multi-database platform for curation with common ontology

- Sponsored by University of Helsinki
- Largest source is CHEMBL
- 1.7M compounds, 13K targets

ATOM Modeling PipeLine (AMPL)

The ATOM Modeling PipeLine (AMPL)

An open source software library for building and sharing machine learning models that predict bioassay activities or molecular properties from chemical structures

From chemical structure and bioassay/property data to model to prediction

End-to-End Data-Driven Modeling Pipeline

Common infrastructure in place and ready to receive/transform new data

Benefits:

- Easy integration of diverse datasets
- Integration with scalable data and model services environment
- High-performance hyperparameter optimization
- Rapid evaluation of model architecture
- Seamless HPC integration using world-class compute systems
- Ensemble integration of models from multiple sources

Modeling uncertainty

- Random Forest
 - Calculate the standard deviation of predictions from individual trees
- Neural Networks
 - Use DeepChem's method, which combines aleatoric (sensing uncertainty) and epistemic (model uncertainty) values (Kendal and Gal 2017)
 - Aleatoric: Modify loss function and train model to predict both response variable and input variance
 - Epistemic: Apply dropout masks during prediction and quantify variability in predictions

• Then
$$\sigma_{total} = \sqrt{\sigma_{aleatoric}^2 + \sigma_{epistemic}^2}$$

Model uncertainty is critical to active learning and remains an open challenge

ATOM

Blood plasma binding (HSA)

Model derived uncertainty varies depending on the model and dataset

Human Liver Microsomal Clearance

Model derived uncertainty varies depending on the model and dataset

ATOM

AMPL has been released open source

ATOM Modeling PipeLine (AMPL) for Drug Discovery

license mit

discovery

Created by the Accelerating Therapeutics for Opportunites in Medicine (ATOM) Consortium

AMPL is an open-source, modular, extensible software pipeline for building and sharing models to advance in silico drug

The ATOM Modeling PipeLine (AMPL) extends the functionality of DeepChem and supports an array of machine learning and molecular featurization tools. AMPL is an end-to-end data-driven modeling pipeline to generate machine learning models that can predict key safety and pharmacokinetic-relevant parameters. AMPL has been benchmarked on a large collection of pharmaceutical datasets covering a wide range of parameters.

A pre-print of a manuscript describing this project is available through ArXiv. readthedocs are available as well here.

AMPL: A Data-Driven Modeling Pipeline for Drug Discovery

Amanda J. Minnich, Kevin McLoughlin, Margaret Tse, Jason Deng, Andrew Weber, Neha Murad, Benjamin D. Madej, Bharath Ramsundar, Tom Rush, Stacie Calad-Thomson, Jim Brase, and Jonathan E. Allen*

 ♥ Cite this: J. Chem. Inf. Model. 2020, 60, 4, 1955–1968
 Publication Date: April 3, 2020 ∨ https://doi.org/10.1021/acs.jcim.9b01053
 Copyright © 2020 American Chemical Society
 RIGHTS & PERMISSIONS © ACS AuthorChoice

Article Views	Altmetric	Citations
1565	4	1
LEARN AB	OUT THESE ME	TRICS

Share Add to Export

FOR THE ON GITHUB

https://pubs.acs.org/doi/full/10.1021/acs.jcim.9b01053

https://github.com/ATOMconsortium/AMPL

Building new predictive models Human-level system models

Modeling frameworks support the ATOM workflow

Current PK modeling activities

A limited first case – Single ML model

Generating world class open data for PK modelling

Valuable data sets by combining curated and newly generated data

Started from in vivo Obach-Lombardo in-vivo data set and adding

ATOM Generated In Vitro data

300 compounds

- Hu Liver Microsomal Clearance
- Hu Liver Microsomal Protein Binding
- Plasma Protein Binding
- B/P Partitioning
- Log D (in progress)

Largest available set *in vitro* PK data with human *in vivo* data ATOM Generated Novel Human Cell Line Data

200 Compounds

- Myocyte Partitioning
- Adipocyte Partitioning

Unprecedented humanrelevant PK predictions

ATOM curated in-vitro and in-vivo data

- In vivo and in vitro data for Obach dataset (150-200 Compounds)
- ChEMBL datasets (ML ready)
 - o Permeability
 - o Log D
 - o Log P
 - Fup
 - Microsomal Clearance (rat, dog, human)

In silico methods to predict human steady state volume of distribution

ATOM

In silico models to predict human steady state volume of distribution on Lombardo Obach (2018) compounds

Туре	Method	Description
Mechanistic	ADMET mechanistic	 Lukacova mechanistic model to predict tissue partitioning (Kp) ADMET Predictor models
	ATOM mechanistic	 Lukacova mechanistic model to predict tissue partitioning (Kp) ATOM models
Empirical	Rat	Allometric scaling of predicted rat VDss
	Dog	Allometric scaling of predicted dog VDss
	Rat and dog	 Allometric scaling of predicted rat and dog VDss
Direct ML	Direct ML	 Training and prediction on direct human VDss

Predictions on ATOM in silico set (940)

Predictions on ATOM experimental set (250)

(Also compared to methods using experimental fup, RBP, adipocyte and myocyte Kp)

Generative molecular design

ATOM Generative Molecular Design loop Proof-of-Concept

Generative molecular design of AURK B inhibitors

End point: Experimental Starting point: Lead **PILOT 1** Optimization validation Early program data Why Aurora Kinase? • **Cancer relevant**: >30 clinical trials are ongoing or completed for AURKA selective, AURKB selective, and AURKA/B dual inhibitors **Data available at ATOM:** Potency data on ~24k compound available for AURK B and/or AURK A Pharmaceutical discovery relevant problem: Selectivity between kinases is an important and common pharmaceutical discovery problem Structure overlay of AURK A and AURK B

Design Criteria

Proof-of-Concept

32

Our initial molecular design loop is based on multi-parameter optimization in a learned latent space

Junction Tree Variational

- Molecular modification in physical space lead to a very discontinuous cost surface
- Learned generative models provide a continuous latent space in which small design changes lead to small changes in properties
- Our initial implementations are based on junction tree autoencoders
- Trained on ~24K molecular structures associated with AURK A or B
- For expanding design into new chemical spaces we need to expand the training set to ~1B molecular structures
- Not possible with current learning frameworks and systems a target for DOE ML learning systems: LBANN and CANDLE

High Performance Compute Facilitates Large Scale Search

Enables Scalable Management of Heterogeneous Compute Tasks

- Facilitated ideation and evaluation of >3 million compounds in 24 hour run time
- Future scaling by 10x or more achievable on current, 100 node clusters
- Flexible, object-oriented worker framework allows for future addition of systems and physics-based modelling

 $A \top \bigcirc M$ Code going through open source process now, requires (for now) SLURM job schedular ³⁴

~200 Compounds with high potency, selectivity, and other favorable properties

Other predicted properties for top compounds:

Generated Compound	AURK B pIC50	AURK B/A Selectivity (fold)	hERG pIC50	BSEP pIC50*	hLM Clearance mL/min/g	Solubility ug/mL	SAS
Cmpd 1	9.2	5287	3.3	4.3	3.6	1096	2.5
Cmpd 2	9.3	3233	3.2	4.2	2.5	399	2.4
Cmpd 3	9.6	11512	3.6	4.4	2.2	412	2.6
Cmpd 4	9.6	2449	3.2	4.3	2.5	60	2.3
Cmpd 5	9.7	3068	3.3	4.3	2.0	1155	2.5
Cmpd 6	9.6	5756	3.7	4.5	4.3	232	2.3
Cmpd 7	9.3	3296	3.3	4.4	2.6	33	2.4
Cmpd 8	9.1	1197	3.3	4.2	2.4	268	2.5
Cmpd 9	9.2	7724	3.3	4.3	2.3	733	2.7
Cmpd 10	10.1	2270	3.2	4.5	2.6	139	2.4
Cmpd 11	9.8	9948	3.2	4.8	5.0	93	2.4
Cmpd 12	9.7	3555	3.4	4.2	3.6	739	3.1
Cmpd 13	9.2	12116	4.1	4.1	2.1	1741	2.7
Cmpd 14	9.0	1951	3.2	4.2	5.0	343	2.5
Cmpd 15	9.3	3573	3.4	4.4	5.7	1248	2.7
Cmpd 16	9.2	5334	3.9	4.5	4.9	155	2.5
Cmpd 17	9.5	2277	3.2	4.8	5.3	78	2.2
Cmpd 18	9.2	5439	3.3	4.5	2.2	74	2.6
Cmpd 19	9.9	2372	3.2	4.7	4.4	689	2.5
Cmpd 20	9.3	8071	3.4	4.6	3.8	1332	2.8
criteria met Close to criteria criteria not met							

 $ATO \bowtie$

Make Test Results – On Target Pharmacology

Significant Enrichment of High Quality Compounds!

De Novo Synthesis & Testing Confirms Enrichment of High Potency Compounds

	Count	AURK B Potency Very High High (pIC ₅₀ > 9) (pIC ₅₀ > 8)		AURK B/A Selectivity Highly Selective Selective (> 1000 fold) (> 100fold)		
Initial Library	3114	18 (0.6%)	75 (2.4%)	0 (0%)	8 (0.3%)	
Full ATOM	18,582	69	316	7	34	
AURK Library		(0.3%)	(1.7%)	(0.03%)	(0.2%)	
Generated	84	16-43	58	2-35	9-42	
Compounds		(19-51%)	(69%)	(2-42%)	(10-50%)	

42 *de novo* compounds successfully synthesized and tested 42 library available highly scored compounds sourced and tested Rediscovery of Compounds in "Hold Out" Library Further Confirms Accuracy of Models for Generated Compounds

Achievement of Secondary Pharmacology In Alignment with Predictions

- Generally >70% of compounds tested are as good or better than the models predicted
- Selectivity and hERG are more difficult

Criteria	Target	Total Tested	In Target Range (Predicted)	Within 1 log of target
AURK B	pIC ₅₀ > 9	84	16-43 (37)	58 (81)
Selectivity	>1000 fold	84	2-35 (15)	9-42 (48)
hERG*	pIC ₅₀ < 4.5	78	17 (63)	62 (82)
BSEP	pIC ₅₀ < 4.5	77	32 (20)	65 (80)
CL _{int}	< 3 mL/min/g	50	29 (43)*	46 (82)*
Solubility	>10 uM	76	62 (79)	68 (82)

Compounds At Target

The ATOM Platform Active Learning Drug Discovery Framework

ATOM

Acknowledgements

Computational Tech Team

- Benjamin Madej (SM)
- Kevin McLoughlin (GMD/DM)
 Jason Deng (GMD)
- Amanda Paulson (SM)
- Jeff Mast (GMD)
- Derek Jones (GMD)
- Marisa Torres (DM)
- Sergio Wong (MM)
- Dan Kirshner (MM)
- Brian Bennion (MM)
- Stewart He (DM)
- Hiran Ranganathan (DM)
- Ya Ju Fan (DM)
- Soo Kim (DM)

Past Team Members

- Kishore Pasikanti (SM)
- Amanda Minnich (DM)
- Tom Sweitzer (GMD)
- Juliet McComas (GMD)
- Margaret Tse (SM/DM)
- Michael Gunshenan (DM)
- Andrew Weber (GMD/SM)
- Neha Murad (SM)
- Stacie Calad-Thomson (JRC)
- Tom Rush (JRC)
- Joe Polli (GMD/SM)
- Sabrina Crouch (SM)

ATOM Joint

Research **Committee (JRC)**

- Eric Stahlberg
- Jim Brase
- Michelle Arkin
- Dwight Nissley

Questions? More information at https://atomscience.org/

