# Using QSP to predict cardiotoxicity caused by cancer drugs

### Eric A Sobie Icahn School of Medicine at Mount Sinai November 18, 2020





Icahn School of Medicine at **Mount Sinai**  Graduate School of Biomedical Sciences

### Outline

Cardiotoxicity caused by tyrosine kinase inhibitor drugs (TKIs)

Integrated experiments & modeling address toxicity mechanisms

- Assessment of changes in gene expression
- Simulations with mechanistic models
- Cellular physiology experiments

Results: Individual-specific changes in arrhythmia susceptibility caused by drug-induced changes in gene expression

**Future directions** 

# **Tyrosine Kinase Inhibitors (TKIs)**



The potential ligands to RTKs



Proven to be highly effective cancer treatment

Serious cardiac side effect

### Mechanisms underlying cardiotoxicity are poorly understood

### Many TKIs cause cardiotoxicity



# Goal: elucidate patient-specific cardiotoxicity mechanisms

### Normal (Asymptomatic) TKI TKI **Subject B Subject A** Hypokalemia Endothelin 1 **Mild Secondary Insult** Arrhythmia Hypertrophy Cardiotoxicity

### Assumption

 Applying high drug concentrations to kill myocytes is a poor toxicity model

# **Hypothesis**

- "Two-hit." TKIs may alter gene expression in myocytes such that cells become susceptible to additional insults
- Drug responses may be specific to cell lines from particular individuals



Jaehee Shim PhD 2019 Now at Applied Biomath

See also: Shim et al. (2017) Front Physiol 8:651.

# Approach

Step 1: integrate gene expression data with mechanistic mathematical models to generate predictions
Step 2: test predictions experimentally to support or refute hypotheses





### **Methodological Details**

- How do we obtain the gene expression data?
- What mathematical models do we use?
- What are the experimental tests?

### **Experimental Design for Gene Expression Data**



### **Drug Treatments**

#### **Protein kinase inhibitors – many with cardiac risk**

| AFATINIB     | NILOTINIB   | DASATINIB   | TOFACITINIB |
|--------------|-------------|-------------|-------------|
| AXITINIB     | PAZOPANIB   | ERLOTINIB   | TRAMETINIB  |
| BOSUTINIB    | PONATINIB   | GEFITINIB   | VANDETANIB  |
| CABOZANTINIB | REGORAFENIB | IMATINIB    | VEMURAFENIB |
| CERITINIB    | RUXOLITINIB | LAPATINIB   | CETUXIMAB   |
| CRIZOTINIB   | SORAFENIB   | TRASTUZUMAB | BEVACIZUMAB |
| DABRAFENIB   | SUNITINIB   | RITUXIMAB   |             |







LINCS = Library of Integrated Network-based Cellular Signatures

### The Mount Sinai LINCS Team

Marc Birtwistle Ravi Iyengar Eric Sobie Evren Azeloglu Nicole Dubois Joseph Goldfarb Hong Li Milind Mahajan Avner Schlessinger Christoph Schaniel Yi-bang Chen Priyanka Dhanan Tina Hu Gomathi Jayaraman Rick Koch Teeya Raghunandan Jens Hansen Coen van Hasselt Rayees Rahman Yuguang Xiong Pedro Martinez

# Mechanistic cardiac myocyte models

Models simulate ionic currents, intracellular ionic homeostasis Models have been developed over ~50 years of basic physiology research



### Pipeline: patient-specific predictions based on transcriptomic data



**Electrophysiology:** Paci et al *Ann BME* 2013 **Contraction:** Rice et al *Biophys J* 2008

#### Assumptions:

- Model parameters correspond to defined genes
- mRNA levels are proportional to activities

| Parameter         | Genes                                                                                                                                          |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| G <sub>Na</sub>   | SCN5A                                                                                                                                          |
| G <sub>CaL</sub>  | CACNA1C * all voltage gated calcium channel *<br>CACNA1S,CACNA1D,CACNA1B,CACNA1I,CACNA1G,CACNA1H,<br>CACNA1A, CACNA1E,CACNA1F,CACNA1C,CACNA2D1 |
| G <sub>to</sub>   | KCND2, KCND3, KCNA4, KCNA7                                                                                                                     |
| G <sub>Ks</sub>   | KCNQ1, KCNE1                                                                                                                                   |
| G <sub>Kr</sub>   | KCNH2                                                                                                                                          |
| G <sub>K1</sub>   | KCNJ2, KCNJ12                                                                                                                                  |
| P <sub>NaK</sub>  | ATP1A1                                                                                                                                         |
| l <sub>up</sub>   | ATP2A2                                                                                                                                         |
| G <sub>pCa</sub>  | ATP2B4                                                                                                                                         |
| G <sub>f</sub>    | HCN2, HCN4                                                                                                                                     |
| K <sub>NaCA</sub> | SLC8A1                                                                                                                                         |
| Troponin          | TNNC1                                                                                                                                          |
| Myosin            | MYH6, MYH7                                                                                                                                     |
| Actin             | ACTC1                                                                                                                                          |

### Methods for experimental tests

1- Stem cell derived cardiomyocytes (iPSC-CMs)



2- Electrically stimulate cells



3- Record [Ca<sup>2+</sup>] or action potentials as function of location and time



### Why integrate Omics data with mechanistic models?

- Omics measurements are generally snapshots. Simulations can predict dynamics.
- Simulations both generate predictions and suggest prioritization of experiments.

### Individual-specific predictions of altered electrophysiology







### Individual-specific predictions of altered contraction

### **Cell Line A**







### **iPSC-CM** contraction

Spearman rank correlation  $\rho$ =0.64

### Which modeling predictions should we test?

### Simulations allow for efficient prioritization

- (1) Drugs that are predicted to have meaningful effects
- (2) Drugs that influence both electrophysiology and contraction
- (3) Drugs whose effects are predicted to differ between cell lines

### Drugs were selected based on these criteria

### **Experimental tests of individual-specific predictions**













NIL REG (n=80) (n=80)



CTRL TRS BEV NIL PAZ (n=25) (n=35) (n=39) (n=80) (n=80)

TRA GEF (n=35) (n=39)

CTRL (n=25)

800



(n=20) (n=20) (n=20)

(n=25)

(n=20)



#### 4 metrics:

- [Ca<sup>2+</sup>] decay time constant
- Contraction
- Ca<sup>2+</sup> transient triangulation
- [Ca<sup>2+</sup>] area under the curve

#### 4 metrics x 4 drugs x 2 cell lines



**iPSC-CM** cultures

Membrane movement



### Why integrate Omics data with mechanistic models?

- Omics measurements are generally snapshots. Simulations can predict dynamics.
- Simulations both generate predictions and suggest prioritization of experiments.
- Simulations can predict effects of drugs in combination, or of a TKI plus a physiological stimulus (β-adrenergic stimulation, angiotensin, stretch, etc.).

### Simulation and experimental protocol

### Step 1: Implement Drug-induced changes in gene expression Simulate drug-induced alterations to action potentials and [Ca<sup>2+</sup>]

### Step 2: Apply pathological stimuli

Predict changes in cellular susceptibility to arrhythmia triggers Rank drugs for testing based on simulation results

### **Step 3: Test selected modeling predictions**

Measure arrhythmia susceptibility in myocytes derived from stem cells

Important note: Both predictions and experimental tests are cell line-specific

**Overall theme:** 48 hours of drug treatment does not induce overt toxicity, but can influence susceptibility to additional signals

### **Step 2: Pathological triggers**

Most TKIs are not considered cardiac ion channel blockers

Hypothesis: Gene expression changes may alter susceptibility to arrhythmia triggers

### **Protocol:** simulated hypokalemia





Effects of all TKIs were simulated; interesting predictions were selected for testing



Subject A: Trametinib & Cabozatinib are <u>toxic;</u> Trastuzumab & Ponatinib are <u>protective</u>



Subject B: Trastuzumab & Bevacizumab are *toxic;* Trametinib & Gefitinib are *protective* 

### **Experimental tests: Cell line 1**



### **Experimental tests: Cell line 2**



### Hypokalemia summary data: Arrhythmia susceptibility

**Subject A**: Trametinib & Gefitinib are <u>toxic</u> Trastuzumab & Ponatinib are <u>protective</u>



**Subject B**: Trastuzumab & Bevacizumab are <u>toxic</u> Trametinib & Gefitinib are <u>protective</u>



### Hypokalemia data: Reproducibility of experiments

iPSC-CMs can be idiosyncratic. Did we get lucky with particular cell differentiations?



[Ca<sup>2+</sup>] and action potential experiments were performed 3-6 months apart

### Why integrate Omics data with mechanistic models?

- Omics measurements are generally snapshots. Simulations can predict dynamics.
- Simulations both generate predictions and suggest prioritization of experiments.
- Simulations can predict effects of drugs in combination, or of a TKI plus a physiological stimulus (β-adrenergic stimulation, angiotensin, stretch, etc.).
- Modeling results can suggest mechanisms underlying differences between drugs or drug classes.

### Why integrate Omics data with mechanistic models?

 Modeling results can suggest mechanisms underlying differences between drugs or drug classes.

### Mechanisms underlying arrhythmia susceptibility

Simulate control and TKI-treated cells at reduced [K<sup>+</sup>]

Compute change in total charge (integrated current) through each ion channel

**Repolarizing Currents** 



#### **Resting Potential Currents**



#### Mechanisms underlying arrhythmia susceptibility Cell Line A







### **Future Directions: further testing these hypotheses**

- Validate the changes in ionic currents that are predicted to be critical to altered arrhythmia susceptibility
- More cell lines from healthy volunteers. Is there something unusual about one of the two that we tested?
- Correlate iPSC-CM susceptibility with clinical outcomes
  - Collaboration with Angel Chan, Memorial Sloan Kettering
  - Patients who developed trastuzumab cardiotoxicity



 Expand the mathematical modeling pipeline to incorporate additional cardiotoxicity mechanisms

### Future Directions: PredicTox Knowledge Environment





### Conclusions

Combining mRNAseq data with mechanistic models allows us to address the causes of drug-induced cardiotoxicity

Simulations allow us to rank drugs within a class, compare drug classes, and prioritize physiological experiments

Results suggest that short-term treatment with TKIs does not induce overt cardiotoxicity, but can influence susceptibility to physiological stimuli

# Acknowledgements



National Heart Lung and Blood Institute





American Heart Association

Learn and Live

**Current lab members:** Rafael Dariolli, PhD

Chiara Campana **Amy Gutierrez DeAnalisa Jones** Ananya Pavuluri **Taylor Pullinger** Meera Varshneya

#### **Recent alumni:**

Jingqi Gong, PhD Jaehee Shim, PhD Itziar Irurzun Aruna, PhD

#### **Collaborators:**

**Ravi lyengar Evren Azeloglu Nicole Dubois** Angel Chan Marc Birtwistle (Clemson)