Webinar: Predicting subjective or complex clinical outcomes in QSP models ROSA***

Vincent Hurez, D.V.M., Ph.D. Senior Scientist Rosa & Co. LLC

Clinical Trial Optimization

The Challenge

Use Quantitative Systems Pharmacology (QSP) models to make critical decisions!

Drug MOA for FDA IND Filing

Target Prioritization

GO/No GO Decision

QSP models are great tools to integrate pre-clinical and PKPD data and predict mechanistic outcomes.

What is the main goal?

Comprehensive quantitative mapping?

What is the **best drug for me**, Doctor?

Clinicians and regulators rely on various clinical scores to evaluate drug efficacy.

Change in Psoriasis Area & Severity Index (PASI)

https://www.ilumyapro.com/ilumya-results/

Some clinical endpoints are relatively straightforward to implement with precise, quantitative definitions.

Robarts histology score (colitis)

- $RHI = 1 \times chronic inflammatory infiltrate level (4 levels)$
 - + 2 \times lamina propria neutrophils (4 levels)
 - + 3 \times neutrophils in epithelium (4 levels)
 - $+ 5 \times$ erosion or ulceration (4 levels after combining
 - Geboes 5.1 and 5.2).

DAS28, SDAI score (rheumatoid arthritis)

Formulae to calculate the different DAS and SDAI score							
Score	Formula						
DAS28	0.56*sqrt(28TJC) + 0.28*sqrt(28SJC) + 0.70*ln(ESR) + 0.014*pt global VAS						
DAS28-3	[0.56*sqrt(28TJC) + 0.28*sqrt(28SJC) + 0.70*ln(ESR)]*1.08 + 0.16						
DAS28-CRP	0.56*sqrt(28TJC) + 0.28*sqrt(28SJC) + 0.36*ln(CRP+1) + 0.014* pt global VAS + 0.96						
DAS28-CRP-3	[0.56*sqrt(28TJC) + 0.28*sqrt(28SJC) + 0.36*ln(CRP+1)] * 1.10 + 1.15						
SDAI	28TJC + 28SJC + CRP/10 + pt global VAS/10 + phys global VAS/10						
CDAI	28TJC + 28SJC + pt global VAS/10 + phys global VAS/10						

RECIST response criteria (cancer)

Quantitative biomarker (# of affected joints, CRP levels) Subjective measurement (VAS: visual analog scale)

Vander Cruyssen 2005 PMID 16207323

Other disease scores are more complex involving multiple objective and subjective measurements.

L SHOW 🤶

8.5%× 10%

4.5% × 20%

1%× 10%

6% × 20%

0% 1%X

Edema / papulation

Oozing / crusting

Excoriation

Dryness

Lichenification

None Stage1 Stage2 Sta

None Stage1 Stage2 Stag

None Stage1 Stage2 Stag

None Stage1 Stage2 Stage

None Stage1 Stage2 Stage3

1. Extent criteria

Back

오전 10:40

SCORAD

90%

4. Enter scores in the PASI equation to calculate total	Area being scored	Erythema ₀₋₄	In	duration		Scale	S	um + +S	A	rea	۷	Veighting multiplier		(I+E+S) x Area x weighting multiplier
	Head and Neck	2	+	2	+	2	=	6	x	2	x	0.1	=	1.2
	Upper Extremities	2	+	2	+	2	=	6	x	2	x	0.1	=	2.4
	Trunk	2	+	2	+	2	=	6	x	2	x	0.1	=	3.6
	Lower extremities	2	+	2	+	2	=	6	x	2	x	0.1	=	4.8
									Fir	nal	PAS	SI score () =12	

Duffin 2017 doi:10.1007/978-3-319-66884-0 2

SCORAD, EASI (atopic dermatitis)

age	and older ¹	x: ca	Iculation for patients 8 years	of
nt] Body	v region SLEDAL, SLS	, D	ILAG (Iupus)	
Hear	SLE ACTIVITY INDEX SCORE (SIS)			
0%				
Trun	Clinical variables		Laboratory variables	
0% Low	1. Fatique	1	22. ESR 25–50 mm/h	1
EAS	2. Temperature >38°C	1	ESR >50 mm/h	2
0%	3. Arthralgia	1	23. DNA binding <50%	1
"For	4. Arthritis (joint effusion)	1	DNA binding ≥50%	2
uppe	5. Myalgia	1	24. Mild hypocomplementemia	_
² E=	6. Muscle weakness	2	(CH50 80–150 U/mL))	1
³ Wh	7. Serositis (pain)	1	Severe hypocomplementemia	
2=4	8. Serositis (friction rub/X ray/sonography)	2	(CH50 <80 U/mL) Ĵ	2
6=1	9. Vasculitis (minor*)	1	25. CPK >100, aldolase >10 U/mL	2
0-1	10. Vasculitis (major †)	3	26. LE anticoagulant	1
	11. Bulluous skin lesions	3	27. Proteinuria <1.5 g/24 h□	1
	12. Active SLE rash	1	Proteinuria >1.5 g/24 h□	2
· ·	13. Active alopecia	1	28. 5-15 RBC or 1-3 casts/HPF	1
	14. Mucosal ulcers	1	>15 RBC or >3 casts/HPF	2
	15. CNS (minor ¥)	2	29. Hemolytic anemia (>8 g Hb)	1
	16. CNS (major ¶)	3	Hemolytic anemia (<8 g Hb)	2
	17. Cranial nerve palsy	2	30. Thrombocytopenia (40-100,000)	1
	18. Blood pressure >150/90	1	Thrombocytopenia (<40,000)	2
	19. Lymphadenopathy	1	31. Neutropenia (<3,000)	1
	20. Noninfectious lung infiltrates	3	32. Lymphopenia (<1,000)	1
	21. Active thromboembolic event	1		
	Maximum	33	Maximum	19
	Total SIS (Maximum: 52)			

Linkwave Inc. App

Parker 2019 doi:10.1016/B978-0-323-47927-1.00049-9

Most severe

None

How to bridge the gap between QSP model outcomes and relevant clinical trials endpoints?

Time (weeks)

Systematic Process Developed at Rosa ROSA

1. Develop QSP model connecting mechanisms to measurable biomarkers

- The goal of the fit-for-purpose QSP model is to address a specific research question
- Model components necessary to represent target MOA and disease pathophysiology are prioritized
- Discussions with the scientific team inform inclusion of relevant biomarkers, therapies and calculations of defined endpoints

"Focused" clinical endpoints implemented in QSP models can be correlated with complex global outcomes.

Focused Clinical Endpoints (Tissue/pathway-specific)		Global Clinical Endpoints
 Skin: Psoriasis: PASI Atopic Dermatitis: EASI Cutaneous Lupus: CLASI 	→	 Multiple tissue involved Ex: Lupus SLEDAI (32 measurements), correlation with CLASI, DAS-28 score + other biomarkers reported in literature
 Joint: Rheumatoid Arthritis: DAS-28 Lupus Arthritis: DAS-28 	→	 "Subjective" assessments Patients or physician visual assessment scores Fatigue, pain assessment Correlation with inflamed joints & other biomarkers
 Cancer: Sum of longest diameter (SLD) 	?	Life expectancy (cancer survival)

Continuous Clinical Score vs. % of Responder Patients

The clinical score of interest can influence the scope of the project

2. Identify relevant data, clinical score definition and subcomponent measurements

- PASI score $PASI = 0.1 \cdot (E_H + I_H + D_H) \cdot A_H + 0.2 \cdot (E_A + I_A + D_A) \cdot A_A + 0.3 \cdot (E_T + I_T + D_T) \cdot A_T + 0.4 \cdot (E_L + I_L + D_L) \cdot A_L$
 - Body divided into four sections (Head, Arms, Trunk, Lower)
 - percent of body surface area (% BSA) involved estimated (A_H, A_A, A_T, A_L)
 - Severity estimated by three clinical signs measured on a scale from 0 to 4
 - Erythema (redness)
 - Induration (thickness)
 - Desquamation (scaling)

Examples of redness, thickness, and scaling used in a PASI score. (http://www.dermnetnz.org/scaly/pasi.html)

3. Map disease score subcomponents to QSP model species or biomarkers

EASI Score Component Mapping SPASI Score Component Mapping Number of corneocytes **QSP Biomarkers EASI Score** and their relative quality SPASI Scaliness Cells, Mediators Number of Cells Immune Cells keratinocytes Redness and corneocytes Vasodilatory Mediators IL-31 Epidermal_Thicknes SPASI Thickness IL-4 \downarrow TNF-α **1** IL-22 SPASI Thickness Vasc Act Degree of vascular Keratinocytes / TNF-α TNF_Skin activation-SPASI Redness Proinflam Cyt Skin **Barrier Function** Lichenification IL17_Skin Tryptase TSLP 🗸 IL22_Skin **Chemokines Skin** Body Surface Area Pruritus/Scratching Neurons **Correlation with the** Cell Density plaque severity SPASI components

4. Fit parameters for outcome calculations to match published/proprietary clinical data

- Calibrate QSP model parameters to match changes in mediators and cell numbers with therapies
- Calculate disease score components parameters to match changes in disease subscores
- Integrate disease subscore components into overall clinical score, adjusting parameters, if necessary, to match clinical data

Sometimes, clinical score subcomponents cannot be directly linked to model outcomes.

Chung 2011 PMID 21155043 (RA patients)

Correlation between TJC28 and PGA score

Proprietary Clinical Trial Data

- → Rely on correlation between QSP model outcomes and clinical score subcomponent not represented
- DAS28-CRP RA Clinical Score:
 - DAS28-CRP = $0.56 \times \sqrt{(TJC28)} + 0.28 \times \sqrt{(SJC28)} + 0.36 \times \ln(CRP + 1) + 0.014 \times GH + 0.96$
 - From literature and proprietary clinical trial data:
 - CRP correlated with IL-6 levels implemented in the QSP model
 - **GH** (patients global health) correlated with TJC28 calculated in the QSP model

5. Use simulated clinical score outcomes to compare efficacy of new drugs to SOC therapies in virtual patients

Adalimumab vs. Sarilumab Sarilumab + MTX vs. Placebo (MTX) DAS28-CRP DAS28-CRP Ada 40mg (MONARCH) - 8 - Ada 40mg (simulation) Placebo (MOBILITY) MTX (simulation) Sari 200mg (MONARCH) – – Sari 200mg (simulation) - Sari 150 mg (simulation) Sari 150 mg (MOBILITY) Time (weeks) Time (weeks)

DAS28-CRP score simulations compared to clinical trial data

Comparison of predicted reduction in DAS28-CRP (---) with published data (ϕ : mean ± SD)

VPs with different phenotypes can then be created to explore variability in clinical response.

<u>% of VPs with EASI-50 response:</u> new therapy (Tx-A) compared to dupilumab

Rosa's Process for Complex Clinical Scores

1. Develop QSP model connecting mechanisms to measurable biomarkers

2. Identify clinical score definition and subcomponents measurements

3. Map disease score subcomponents to QSP model species or biomarkers

> 4. Fit parameters for outcome calculations to match published/proprietary clinical data

> > 5. Use simulated clinical score outcomes to compare efficacy of new drugs to SOC therapies in virtual patients

Remaining Challenges and Limitations

Challenging Clinical Endpoints for QSP

Solution Used in QSP Projects

 Trial results expressed as % of patients reaching a specific clinical response criteria (ACR20, EASI-50, RECIST,...)

Build a prevalence weighted virtual
 patient cohort using detailed individual

patient data from existing clinical trial

Discrete events (flares, nausea, asthma attacks,...)

Use a statistical threshold model based on correlation with a continuous outcome

- Progression-free survival in oncology
- Cognitive outcomes in neurological disease

Identify, with clinicians' help, alternate

endpoints that can help answering the specific research question

Key Take Home Messages

Complex scores can be simulated in QSP models, if a link between model biomarkers and the disease subscores can be established and calibrated with clinical data.

The capacity of a QSP Platform to report clinically relevant disease scores allows broader adoption of QSP modeling throughout clinical organizations.

QSP models presented developed in collaboration with

DAS28-CRP Calculation in the RA Platform

- DAS28-CRP = DAS28-CRP = $0.56 \times \sqrt{(TJC28)} + 0.28 \times \sqrt{(SJC28)} + 0.36 \times \ln(CRP + 1) + 0.014 \times GH + 0.96$
 - Total immune cell density includes inactive and active immune cells
 - TCJ28 = dynamic calculation function of total immune cell density in joint
 - SCJ28 = 0.75*TJC
 - CRP=4.4*(IL6_Blood)
 - GH = 3.125*TJC28
- Example simulation (right) shows hypothetical 100% inhibition of immune cell recruitment

Placebo Representation ROSA •••••

Some diseases show strong clinical response in the "Placebo" group.

Absolute change in CLASI score (lupus)

QSP models need mechanistic hypothesis to represent the "placebo" effect.

- Identify hypothesis for response in the "placebo" group
 - Background therapy: steroids, topical treatments, palliative interventions
 - Change in disease severity over time
 - Change in diet
 - Better compliance or doctor surveillance
 - ...
- Mechanistic components affected by the "placebo" effect must be represented in the QSP model

Implement mechanistic "placebo" hypothesis.

Examples of reported steroids effects on relevant cell types in skin diseases

Cell Type	IC50 (steroids)	Imax	References
Keratinocytes	10-100 nM	- 20-70 %	Stojadinovic 2007 PMID: 17095510; Le 2010 PMID: 20357482
Dendritic Cells	5-50 nM	- 50-80%	de Jong 1999 PMID: 10449154; Piemonti 1999 PMID: 10352262; Weichhart, 2011 PMID 21368289
T cells	1-10 nM	- 60-90%	Migliorati 1994 PMID: 7831194; Braun 1997 PMID: 9314354; Sun, 2011 PMID: 21204899

- The "placebo" effect is implemented as a constant effect (no drug PK)
- Hill function inhibition parameters is based on in vitro literature data for the various cell types
- As in vivo drug concentrations in skin are difficult to estimate, the simulations will be calibrated to match clinical trial response by adjusting the [drug]/IC50 ratio

Adjust "placebo" response to match clinical data.

Bruce 2019 Arthritis Rheumatol. Abstract Number: 2563

- Protocol
 - $\circ~$ Steroid constant effect with doses ranging from 0 to 10nM
- Results:
 - The 4.5nM steroid dose was chosen for the "Placebo" response in the reference VP