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• (Bounded) Outcome 
Scores (BOS)

– What, why should 
you care?

• Analysis methods
– Ideas

– Confusions

• Practical 
recommendations

Outline

Intuitive but 
problematic 

methods

Continuous

Transformation
•Beta-regression

Feasible 
methods

Censoring

Ordered 
categorical 

Latent variable
•Coarsened Grid
•Bounded Integer
•Latent-Beta

CUB



Chuanpu Hu, PhDChuanpu Hu, PhD

• Often must make best use 
of data

– Reduce bias

– Increase efficiency

– Smaller trials / better 
decisions

• A large class of data: 
(bounded) outcome scores

– Emerging area in 
pharmacometrics, 
especially in past ~3 years

Analyzing Data
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• Take restricted values within boundary

• Composite scores measuring disease severity

– Used in many disease areas – immunology, neuroscience, etc.

– Primary clinical trial endpoints, or used to derive them

• Example:

– Psoriasis Activity Severity Index (PASI) score: 0 – 72, with 0.1 increments

• For notation, may standardize data as integers 0, 1, 2, …, n

– Alternatively, onto closed interval [0,1]: for PASI score, [0, 1/721, 2/721, …, 1]

• Ordered categorical endpoints in nature (with many categories)

Bounded Outcome Scores (BOS)
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• Achieving a level, change from baseline, or combination of both 
(reaching certain threshold)

– Often used as clinical trial primary endpoints 

• Example: 
– Psoriasis: PASI 75/90/100: achieving 75, 90, or 100% improvement 

from baseline
• Achieve PASI 100   PASI score = 0

• Model may describe often original scores but rarely derived 
endpoints
– Describing derived endpoints requires that of the distribution of the 

original scores
• Very difficult!

Derived Endpoints: Higher Bar for BOS
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• If small # of categories (e.g., <6), analyze as ordered 
categorical

• “Intermediate” (e.g., >6 but <10) ??

• If “large” # of categories (e.g., >10), analyze as continuous

– Problems:

• Predicting data outside original range

• Difficulty with skewed data distributions

Common (Folklore?) Thinking
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• Data Example: guselkumab
Psoriasis

– 2 Phase 3 studies, placebo-
controlled, 48 weeks

• PASI score histograms at all 
14 visits skewed to left

– More PASI score = 0 over time

BOS May Have Skewed Distributions
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Longitudinal Model Diagram

Drug Dose 
Abs.

Disease Formation of
Disease (kin)

Amelioration of
Disease (kout)

Inhibitory
Effect

(–)

Elimination
CL

Concentration-Time

Efficacy Time Profile

Placebo Effect

• Sufficient PK: sequential PK/PD analysis fixing individual Posthoc PK parameter estimates
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• As treatment 
progresses:

– Observed 
median and 5% 
percentiles both 
become near 0
• Cannot be 

achieved by 
continuous 
model 
predictions

– Model predicted 
median is fine, 
but 5% 
percentile 
outside data 
range (<0)

Model Data as Continuous: VPC of PASI 
Score Biased at Low End
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• Notably 
underpredicting 
PASI 90, 
among others

VPC of Derived Endpoints: PASI 75/90/100
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• Continuous 
model 
significantly 
underpredicte
d PASI 100 in 
a highly 
sensitive 
subpopulation

– Achieved 
PASI 100 at 
Week 28, 
then taken 
off drug

More Biased VPC of A Derived Endpoint 
in a highly sensitive subpopulation
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• Common transformations, e.g., log or logit, cannot be directly applied 

– At boundary (0), log(0) = 

• Proportional/(additive + proportional) error model Ill-behaved

– At boundary (0), likelihood  

Transformation and Related Approaches
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• Originated from psychological literature

– Spread to statistical literature (occasionally but not recently) and pharmacometrics

• Beta-distribution: on open interval (0,1), with density: f(x) ~ xa(1-x)b

• Linearly transform original score to (0,1)

– (Left) boundary must be transformed to some value:

– Transform data to [, 1)

– Arbitrary fudge factor : often  = 0.01

• Intuition: small change does not matter

Transform Data to within Boundary?
Beta-regression
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• Statistically ill-behaved 

– Boundary observations become arbitrarily influential with smaller , e.g., 10-6

• Small change does matter at highly-sensitive location!

– “Butterfly effect”

Problem with Beta-regression
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• Motivated from modeling 
BQL PK

• Separate data on/within 
boundary: 

– Model data within boundary 
as continuous, with 
transformations to handle 
data skewness, if needed

– Model boundary data as 
censored, like “BQL”

– Need additional “LLOQ”
parameters for boundary 
data

• Removes previous problems 
due to achieving boundary

Censoring

• Esthetics: boundary and within-
bounds data have the same 
nature; why should they be 
treated differently (“BQL” vs 
continuous)?
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• BOS data are in fact ordered categorical

• Treating the data as such (using logit/probit regression) is superior, when can be done

• If too many intercepts to estimate: can they be “fixed”?

Ideally, Respect Data Nature
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• Most natural

• Underlies standard categorical data analysis approaches of 
logit/probit regression

• Observed data occurs when underlying latent variable crosses 
certain thresholds

• The thresholds correspond to intercepts

• Idea: 

– Fix the thresholds “naturally”

– Model latent variable with flexible distributions to handle skewness
• Instead of transforming the original score

Recent Advances: Latent Variable Approaches
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• Established BOS concept

Approach 1: Coarsened Grid 
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Coarsened Grid Illustration

BOS0 1 2 3

Latent Variable (U)

• Motivation: BOS value k = 0,1, ...m occurred by rounding of 
continuous latent variable U on interval (0, m) to integer

• Latent variable thresholds fixed at middle points: 0.5, 1.5, etc.

• Scale U to (0,1), then model with logit-normal distribution 

• logit(U) = pred + , with  ~ N(0, 2)
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• Motivated differently: Wellhagan et al, PAGE 2018

Approach 2: Bounded Integer

• Should be close to Coarsened Grid, especially if # of category is large

• Split a normal 
distribution

– To # of 
intervals as 
BOS 
categories

– With equal 
probability

• Model mean and 
sd
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• Both approaches may have difficulties with skewness with 
underlying normal distribution

More on Coarsened Grid and
Bounded Integer
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• The newest and brightest

Approach 3: Latent-beta
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• Use beta distribution 
instead of (logit)normal

• Wikipedia:

– Beta distribution shapes

• High flexibility to model 
skewed distributions

• Resolves all previous 
issues with other 
approaches

Latent-beta
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• Model 
reasonably 
predicted 
observed PASI 
scores

– Minor problem 
remained at 
baseline median
• Baseline 

distribution 
appeared 
more skewed

– Reasonable 
prediction of 
treatment effect 

Applying Latent-beta to Guselkumab Psoriasis
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• Model 
reasonably 
described data

• Later time 
points of 
Study 2 are 
nuanced due 
to treatment 
optimization

• Much 
improved from 
the continuous 
approach

Latent-beta VPC of Derived Endpoints: 
PASI 75/90/100
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• Latent-beta model 
reasonably 
predicted PASI 
100 in a highly 
sensitive 
subpopulation

– Achieved PASI 
100 at Week 28, 
then taken off 
drug

• Much improved 
from the 
continuous model

Reasonable VPC of Derived Endpoint
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• Brief History of PASI Score Modeling 

– Few publications pre 2020 – suggesting its difficulty

• Unpublished (Hutmacher ~2016): Censoring described PASI scores and 
PASI 75, but biased in PASI 90/100

• Success in describing PASI scores and PASI 75/90/100 not achieved 
until 2020, with Latent-beta

– Even in a highly sensitive subpopulation!

• 2021: latent-beta success in PASI score and PASI 75/90/100 repeated, 
and another method applied

• 2022: latent-beta success repeated in a highly sensitive subpopulation

Complexities of Describing Derived Endpoints 
in Skewed Distributions:
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• Response-adaptive study designs

– Induction-maintenance paradigm:
• Responders to initial treatment re-randomized to different “maintenance” treatments

• Few successes in modeling “maintenance” data

• Requires getting between-subject variabilities right

Complexities of Describing Reponses in 
Highly Sensitive Subpopulations
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• Popular in psychological rating data analysis

• Motivated from the Binomial distribution

– Not a latent variable approach

– But still respect data nature

Another Family of Models: CUB
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• Binomial distribution with total 
level = n:

– Prob(score = k) = 


 ି

– Distribution skewed (left, right) 
when p (<,>) 0.5

• Random noise, i.e., Uniform:

– Prob(score = k) = 1/n

• Combine the distributions, with 
mixture probability :

– Combined Uniform Binomial (CUB)
• Prob(score = k) =  


𝑝(1 − 𝑝)ି

+ (1- ) /n

CUB: Details
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• Data: ustekinumab psoriasis Phase 2

• 320 patients randomized to receive SC injection in 5 arms:

– PBO (till Week 20), 45 mg, 90 mg, (45 mg weekly x4), (90 mg weekly x4)

• Data collected ~q4w during Weeks 0-32

Latent-beta vs CUB
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PASI Score VPC: CUB Somewhat Nuanced
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• Latent-beta
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• CUB
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PASI 75/90/100 VPC: Latent-beta 
Somewhat better in PASI 90

• Latent-beta • CUB
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• Overall, VPC of latent-beta slightly better than CUB

– In both PASI scores and PASI 75/90/100

• Latent-beta also has much better NONMEM OFV 

– Improvement >400 over CUB

• Uniform distribution in CUB too noisy?

– May need future verification

• NONMEM implementation of latent-beta:

More Details
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• Continuous: (mean, sd)

• Censoring: (mean, sd, censoring limits at boundary) –
2 extra parameters

• Ordered categorical: (intercepts) – many parameters!

• Coarsened Grid: (mean, sd)

• Bounded Integer: (mean, sd)

• Latent-beta: (mean, precision)

• CUB: (p, )

Model Parameters - Complexity
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• Modeling is typically done on the mean parameter

– As function of dose/exposure, etc.

• How about the variance/precision parameter, e.g., should it 
be modeled as a function of the mean?

– Like “proportional error” in pharmacokinetics

– Used in BOS literature, though no clear evidence of need

• To avoid overfitting, likely best to keep variance/precision as 
a constant parameter for BOS, unless clear reasons 
supporting otherwise

Which parameter to model?
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• AIC/BIC cannot be used to compare Continuous with Censoring 
or categorical approaches

– “Likelihood” not comparable with changed data

– Same when treating data differently (numerical vs. categorical)!
• Category levels have no numerical meaning: cannot calculate “Low” + 

“Mild”
• Read Akaike (1974)

– Confusion in pharmacometrics literature even to-date

Comparing the Methods: Confusion with AIC for 
Pharmacometricians
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• Use AIC/BIC to compare only categorical approaches

– i.e., latent variable approaches, and CUB

• To compare approaches treating data differently, e.g., 
continuous vs. categorical: Use VPC

– In abstract:
• Continuous scale will favor the continuous approach

• Categorical scale (proportion of achieving category) will favor the 
Categorical approach

– (Another indication that Continuous/Categorical approaches are 
not formally comparable)

– Choose the quantity/scale of practical interest 

Appropriate Method Comparisons
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• Use Ordered Categorical when possible, even if >10 categories

• If not (i.e., too many intercepts to estimate):

– OK to use Continuous, if
• Symmetric data
• Tight timelines

– OK to use Censoring, if
• Skewed data
• Do not care about esthetics, or predicting outside data range

– Can use Coarsened Grid / Bounded Integer, if
• Near-symmetric data

– (Should?) use Latent-beta
• The only method shown to describe derived endpoints, in a highly sensitive 

subpopulation

– Might consider CUB

Summary: Which Method to Use, When?
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