Cross-species translation of drug-induced electrophysiological response in cardiac myocytes

Stefano Morotti

Assistant Professor in Residence Department of Pharmacology University of California Davis

<u>smorotti@ucdavis.edu</u> **У** @MorottiLab

Outline

- Inter-species differences in cardiac electrophysiology
- Impact on drugs' cardiotoxicity screening
- Development of cross-species translators
- Experimental validation
- Future directions

Acknowledgements

Ele Grandi

Haibo Ni Alex Fogli Iseppe Xianwei Zhang Lin-Lin Liu

Andy Edwards

UCDAVIS HEALTH

Crystal Ripplinger Lianguo Wang

Don Bers

Bence Hegyi Kim Hellgren

Cardiomyocyte electrophysiology

Action Potential (AP) – Ca Transient (CaT) – Myofilament Contraction

AP regulation & arrhythmias

• Impaired AP regulation facilitates both development & maintenance of arrhythmias

- Inherited conditions (long QT, Brugada, etc.)
- Acquired conditions (heart failure, atrial fibrillation, etc.)
- Drug-induced

(Torsade de Pointes, brady-arrthyhmias, etc.)

Animal models in arrhythmia research

Inter-species differences in cardiac electrophysiology

Inter-species differences in ventricular electrophysiology

Impact on drugs' cardiotoxicity screening

JACC: BASIC TO TRANSLATIONAL SCIENCE © 2019 THE AUTHOR. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/).

TRANSLATIONAL PERSPECTIVE

Limitations of Animal Studies for Predicting Toxicity in Clinical Trials

Is it Time to Rethink Our Current Approach?

Gail A. Van Norman, MD

VOL. 4, NO. 7, 2019

Impact on drugs' cardiotoxicity screening

JACC: BASIC TO TRANSLATIONAL SCIENCE © 2019 THE AUTHOR. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/).

TRANSLATIONAL PERSPECTIVE

VOL. 4, NO. 7, 2019

FIGURE 1 Failures in Translational Research: Preclinical and Clinical Trials

Percentage of Failures of Drugs That Advance Beyond Pre-Clinical and Clinical Trials

We must systematically characterize species-differences in the regulation of cardiomyocyte electrophysiology

Species-differences in response to **β**-adrenergic stimulation

i) β-AR signaling mediates the wellknown *fight-or-flight* response, a conserved mammalian behavior

ii) β-AR stimulation is associated with increased propensity for cardiac arrhythmias

Sympathetic nerve stimulation (SNS) in whole-heart preparations

A Innervated Rabbit Heart

Base

RV

LV

Ape

Aortic Cannula

10mm

Rabbit

SNS

205

120 ms

105

Baseline

Base

CaTD₈₀

С

Consequences of SNS in rabbit vs. mouse

Conserved chronotropic & inotropic response

AP-clamp simulations reveal inter-species differences

Bulk Cytosol

CETR

rabbit only

Myofilaments

I_{NaL}

Input: time-dependent modulation of pacing rate and APD + ISO administration

<u>Output</u>: time course of CaT amplitude (*inotropy*) and time constant of CaT decay (*lusitropy*)

Sub-Sarcolemma

Multi-species framework for

ventricular myocyte simulations

Sarcolemma

contraction in

ventricular

myocytes

Based on Grandi et al., 2010, Moreno et al., 2013 (Human); Shannon et al., 2004, Soltis & Saucerman, 2012, Negroni et al., 2015, Bartos et al., 2017 (Rabbit); Morotti et al., 2014, Surdo et al., 2017 (Mouse)

mouse only

PKA-dependent phosphorylation

CaMKII-dependent phosphorylation

AP-clamp simulations reveal inter-species differences

Input: time-dependent modulation of pacing rate and APD + ISO administration

<u>Output</u>: time course of CaT amplitude (*inotropy*) and time constant of CaT decay (*lusitropy*)

Inter-species differences in AP repolarization lead to optimal enhancement of inotropy & lusitropy during fight-or-flight response

AP-clamp simulations reveal inter-species differences

Mouse

90-

DS

AP clamp

<u>Input</u>: time-depender modulation of pacing rate and A + ISO administrat

<u>Output</u>: time course of C amplitude (inotro and time constan CaT decay (lusitro

How can we use our computational models to improve the prediction of human physiology from experiments in animals?

<u>inotropy & lusitropy</u> during fight-or-flight response

<u>in 25 in </u>

<u>to</u> of

Existing computational approaches

• Comparing simulations performed in different species

Existing computational approaches

- Comparing simulations performed in different species
- Cross-species translation based on estimation of drug effects from animal experiments, and execution of new simulations with human model

Assessment of drug-induced effect in animal experiments

Estimation of drug effects from animal data (i.e., *refitting the animal model*)

Inclusion of drug effects in human model & execution of forward simulations

Check for update

Computational translation of drug effects from animal experiments to human ventricular myocytes

Tveito et al., Sci Rep. 2020

Goal: to develop an *immediate* cross-species translator

Assessment of drug-induced effect in animal experiments

-

≡ Google Translate	Sign in
XA Text Documents	
DETECT LANGUAGE ENGLISH SPANISH FRENCH V C ENGLISH SPANISH ARABIC V	
Translation	
5,000	Section
	Seria TeeaDack

A previously developed immediate translator

Methods: building populations of models

Methods: performing sensitivity analysis

Methods: constructing the translators

Development of cross-species translators

Development of cross-species translators

10 AP & CaT features

UV, MDP, AP_{amp}, APD₉₀, APD₅₀, CaT_{min}, CaT_{amp}, CaT_{ttp}, CaT_{t50}, CaT_{tau} 6 AP & CaT features

APD₉₀, APD₅₀, CaT_{t50}, CaT_{tau} APD₉₀, APD₅₀, CaT_{min}, CaT_{amp}, CaT_{t50}, CaT_{tau}

4 AP & CaT features **2 AP features** APD₉₀, APD₅₀

Control

2 AP features APD₉₀, APD₅₀ **4 AP & CaT features** APD₉₀, APD₅₀, CaT_{t50}, CaT_{tau} $\frac{\textbf{6 AP \& CaT features}}{\text{APD}_{90}, \text{APD}_{50}, \text{CaT}_{min}, \text{CaT}_{amp}, \text{CaT}_{t50}, \text{CaT}_{tau}}$

10 AP & CaT features

UV, MDP, AP_{amp} , APD_{90} , APD_{50} , CaT_{min} , CaT_{amp} , CaT_{ttp} , CaT_{t50} , CaT_{tau}

• Selective ion channel block

2 AP features APD₉₀, APD₅₀ 4 AP & CaT features APD₉₀, APD₅₀, CaT_{t50}, CaT_{tau} $\frac{\textbf{6 AP \& CaT features}}{\text{APD}_{90}, \text{APD}_{50}, \text{CaT}_{min}, \text{CaT}_{amp}, \text{CaT}_{t50}, \text{CaT}_{tau}}$

10 AP & CaT features

UV, MDP, AP_{amp} , APD_{90} , APD_{50} , CaT_{min}, CaT_{amp}, CaT_{ttp}, CaT_{t50}, CaT_{tau}

Morotti et al., Sci Adv. 2021

APD₉₀, APD₅₀, CaT_{min}, CaT_{amp}, CaT_{t50}, CaT_{tau}

CaT_{min}, CaT_{amp}, CaT_{ttp}, CaT_{t50}, CaT_{tau}

Limitations of mouse-to-human translation

i) Very different sensitivity to changes in some model parameters (e.g., I_{NaL} , I_{Kr} , I_{K1})

2 AP features APD₉₀, APD₅₀ **4 AP & CaT features** APD₉₀, APD₅₀, CaT_{t50}, CaT_{tau} 6 AP & CaT features

 $\mathsf{APD}_{90}, \mathsf{APD}_{50}, \mathsf{CaT}_{\min}, \mathsf{CaT}_{\mathsf{amp}}, \mathsf{CaT}_{\mathsf{t50}}, \mathsf{CaT}_{\mathsf{tau}}$

10 AP & CaT features

UV, MDP, AP_{amp} , APD_{90} , APD_{50} , CaT_{min} , CaT_{amp} , CaT_{ttp} , CaT_{t50} , CaT_{tau}

Limitations of mouse-to-human translation

i) Very different sensitivity to changes in some model parameters (e.g., I_{NaL} , I_{Kr} , I_{K1})

ii) Different propensity for membrane potential and/or Ca instabilities

<u>2 AP features</u> APD₉₀, APD₅₀ **4 AP & CaT features** APD₉₀, APD₅₀, CaT_{t50}, CaT_{tau} 6 AP & CaT features

APD₉₀, APD₅₀, CaT_{min}, CaT_{amp}, CaT_{t50}, CaT_{tau}

10 AP & CaT features

UV, MDP, AP_{amp} , APD_{90} , APD_{50} , CaT_{min}, CaT_{amp}, CaT_{ttp}, CaT_{t50}, CaT_{tau}

I_{NaL} block

To account for variability among experimental datasets, when applying our translators to experimental data, we use the **relative changes** in the measured AP & CaT properties induced by a perturbation (rather than the absolute values)

- -Actual $f_{animal, drug} * B_{cross} = Predicted f_{animal, drug}$ $\overline{\text{APD}}_{90, \text{human, drug}} = \text{function} \left(\text{APD}_{90, \text{animal, drug'}} \text{APD}_{50, \text{animal, drug'}}, \text{CaT}_{\text{amp, animal, drug'}} b_{\text{APD90-APD90'}} b_{\text{APD50-APD90'}} b_{\text{CaTamp-APD90'}} \right)$ $\begin{array}{l} APD_{90,\,animat,\,drug} = APD_{90,\,baseline\,animal\,model,\,ctrl} & APD_{90,\,exp,\,drug} \,/\,\, APD_{90,\,exp,\,ctrl} \\ APD_{50,\,rabbit,\,drug} = APD_{50,\,baseline\,animal\,model,\,ctrl} & & APD_{50,\,exp,\,drug} \,/\,\, APD_{50,\,exp,\,drug} \,/\, APD_{50,\,exp,\,ctrl} \\ CaT_{amp,\,rabbit,\,drug} = CaT_{amp,\,baseline\,animal\,model,\,ctrl} & & CaT_{amp,\,exp,\,drug} \,/\,\, CaT_{amp,\,exp,\,ctrl} \end{array}$ with Simulations with baseline model **Experiments**

I_{NaL} block

I_{Kr} block

I_{K1} block

I_{CaL} block

Prediction of response to sympathetic stimulation

- Ventricular activity is influenced by:
 - Increased beating rate (via SAN)
 - Altered activity of the targets of the β-adrenergic (β-AR) signaling cascade

Cross-frequency prediction of drug-induced effect

• Frequency-dependence of ion channel block in rabbit ventricular myocytes

Cross-frequency prediction of drug-induced effect

• Predicting the effect of block of I_{NaL} on APD from 1 to 0.5, 2 & 3 Hz data

Courtesy of Dr. Bence Hegyi **Bers Lab**, UC Davis

Cross-frequency prediction of drug-induced effect

Cross-frequency prediction of ISO-induced effect

• Predicting the effect of Isoproterenol (ISO) on APD from 1 to 0.5, 2 & 3 Hz data

Courtesy of Dr. Bence Hegyi **Bers Lab**, UC Davis

Cross-species prediction of ISO effect at fixed pacing rate

• Predicting the effect of **ISO** administration on rabbit APD from mouse data (1 Hz)

ctrl ISO

ctrl ISO

Hegyi et al

Sympathetic stimulation in quasi-physiological conditions

Sympathetic stimulation in quasi-physiological conditions

Experimental validation summary

- Cross-species prediction of drug-induced effect (mouse & rabbit to human)
- Cross-frequency prediction of drug-induced effect (rabbit)
- Cross-frequency prediction of ISO-induced effect (rabbit)
- Cross-species prediction of ISO-induced effect at fixed pacing rate (mouse to rabbit)
- Cross-species prediction of sympathetic stimulation effect with concomitant change in heart rate (mouse to rabbit)

Conclusions

- We constructed a suite of translators for quantitatively mapping electrophysiologic responses across species and experimental conditions
- We trained these statistical operators using a broad dataset obtained simulating populations of our models of mouse, rabbit, and human ventricular myocytes
- We tested our translators against experimental data describing the response to various stimuli (ion channel block, change in beating rate, β-adrenergic challenge)
- Our work demonstrates that this approach is well suited for predicting the effects
 of perturbations across different species, thereby suggesting its integration into
 mechanistic studies and drug development pipelines

Future directions

- Further refinement/validation
- Inclusion of more species
- Cross-regional translation (atria⇔ventricles)
- Cross-sex translation

• Female sex is an independent risk factor for Torsade de Pointes (TdP)

- Female sex is an independent risk factor for Torsade de Pointes (TdP)
- Female sex is underrepresented in both experimental & clinical studies

Percentage of Women in CVD Clinical Trials vs. Deaths

Percentage of Women

ARTICLE

Sex-Specific Classification of Drug-Induced Torsade de Pointes Susceptibility Using Cardiac Simulations and Machine Learning

Alex Fogli Iseppe¹, Haibo Ni¹, Sicheng Zhu¹, Xianwei Zhang¹, Raffaele Coppini², Pei-Chi Yang³, Uma Srivatsa⁴, Colleen E. Clancy^{1,3}, Andrew G. Edwards¹, Stefano Morotti¹ and Eleonora Grandi^{1,*}

We combined **mechanistic modeling** & **machine learning** to develop sex-specific TdP classifiers (based on AP & CaT features)

- TdP classifiers require different features in females vs. males
- if applied to female data, male-based classifiers perform poorly and lead to a systematic underestimation of arrhythmic risk

Acknowledgements

Ele Grandi

Haibo Ni Alex Fogli Iseppe Xianwei Zhang Lin-Lin Liu

Andy Edwards

UCDAVIS HEALTH

Crystal Ripplinger Lianguo Wang

Don Bers

Bence Hegyi Kim Hellgren

Cross-species translation of drug-induced electrophysiological response in cardiac myocytes

<u>smorotti@ucdavis.edu</u> **y** @MorottiLab