

Al-powered modeling approaches to support the development of new therapies for autoimmune diseases

> Philippe MOINGEON Immuno-inflammation, Servier

> > September 21st, Rosa Webinar series

An independent, global pharmaceutical group governed by a non-profit foundation

31st largest pharmaceutical Group worldwide* 2nd largest pharmaceutical Group in France*

22,500 employees

€4.7 billion Group revenue in 2019/2020

■ Brand-name medicines: €3.3 billion

€626 million **EBITDA** in 2019/2020

Generic medicines: €1.4 billion

4th leading pharmaceutical group in cardiology worldwide* 3rd leading pharmaceutical group in hypertension worldwide*

More than 20% of Group brand-name revenue invested in R&D each year in average

*Source: IQVIA Analytics Link, MAT Q2-2021

150 countries in which the Group's medicines are distributed

Leader in cardiology

Ambition to become

a renowned and innovative player in oncology

R and D focus:

- Oncology
- Neurology
- Immunoinflammation

Outline

•Al applications in support to drug development

- A pharmaceutical industry perspective
- Disease modeling applied to Sjogren syndrome (and Lupus)
- Implications for drug design and development
- *High throughput drug discovery: the Patrimony platform*

In silico prediction of drug efficacy

- QSP model of an anti IFNa Mab in Lupus
- Causal disease representation (eg Sjogren)

Conclusions and perspectives

Artificial intelligence applied to challenges associated with new drug development

SENSING

В Less than 7% of drugs coming from discovery eventually reach the patients

- Creation of predictive models ۲
- Support for decision-making

selecting the right therapeutic target, right drug-candidate and right patient

What AI can bring

Integration of massive, multimodal, structured and unstructured data

Computational precision medicine to relate patient and drug knowledge spaces

Moingeon P, Kuenemann M, Guedj M. Drug Discov Today, 2022, 27: 215

Al applications to new drug development

Understanding disease complexity and heterogeneity

PATIENT STRATIFICATION

Identification of dysregulated genes/proteins/pathways involved in pathophysiology

SYSTEM BIOLOGY

Identification of molecules interacting with target and with specific properties

MULTITASK PREDICTION OF DRUG PROPERTIES

In silico evaluation of drug efficacy and safety

Digital twins, virtual patients, QSP, causal disease models

IN SILICO TRIAL SIMULATION

Systemic Lupus Erythematosus (SLE) : a complex, heterogeneous auto-immune disease

Diverse clinical manifestations:

- Skin, joints, kidney, heart, lungs, central nervous system, blood, etc.

-Fatigue

Significant morbidity & socio economic burden Survival after diagnosis ~ 95% (5yrs), 91% (10yrs), 78% (20yrs)

Current treatment options:

- Corticosteroids, antimalarials, immunosuppressors (Mycophenolate mofetil, Methothrexate, cyclophosphamide, Azathioprine), anti B cells (Belimumab), anti-**IFNR MAb (Anifrolumab)**

High residual unmet medical need

DRG, 2018. Tsokos, 2018. Tsokos, 2011. Durcan, 2019

Primary Sjögren Syndrome (pSS): a complex, heterogeneous auto-immune disease

- Progressive autoimmune disease characterized by dry eyes, dry mouth
- **Immune infiltrates** leading to destruction of lachrymal and salivary glands
- Systemic manifestations involving musculoskeletal and nervous systems, lungs, kidneys, skin and blood vessels
- Significant quality-of-life impairment (fatigue)
- **Increased risk** (16- to 44-fold *vs* general population) of developing **lymphoma**
- Current treatments are symptomatic

High unmet medical need

Disease modeling to understand patient heterogeneity and identify therapeutic targets: a system biology approach

Stratification of patients into homogeneous subgroups (clusters) Analysis of dysregulated molecular pathways and target identification

Ingenuity pathway analysis (IPA)

Clusterization of patients into endotypes reflecting pathophysiology

syndrome

Selection of drug candidates interfering with therapeutic target(s)

Positioning of appropriate drug candidates in patient sub-populations (precision medicine)

- Design, selection, optimization of molecules interacting with the target
- **Design of combination** therapies
- **Repurposing of existing** \succ molecules

Modeling autoimmune diseases following extensive molecular profiling of patients

330 healthy volunteers

Nature Com, 2021, 12: 3523

Check for updates

ARTICLE

OPEN https://doi.org/10.1038/s41467-021-23472-7

A new molecular classification to drive precision treatment strategies in primary Sjögren's syndrome

Perrine Soret^{1,29}, Christelle Le Dantec^{2,29}, Emiko Desvaux^{1,2}, Nathan Foulquier², Bastien Chassagnol ¹ Sandra Hubert¹, Christophe Jamin ^{2,3}, Guillermo Barturen ⁴, Guillaume Desachy¹,

Stratification of pSS patients in 4 homogeneous molecularly defined clusters

* *

Frequency

*

304 pSS patients from the PRECISESADS cohort

Based on RNASeq data from whole blood CI C3 TAN AND AND CONTRACT TO AND AND IN THE OWNER with the his and a start man and a stall strate the

Clustering of pSS patients

→4 distinct clusters of pSS patients defined by 3 gene modules (hierarchical and k-means clustering)

PMN in Leucocytes Eosinophils in PMN Neutrophils in PMN Monocytes in Leucocytes Classical monocytes in Monocytes Non classical monocytes in Monocytes Intermediate monocytes in Monocytes Lymphocytes in Leucocytes B cells in Leucocytes T cells in Leucocytes NK-like T cells in T cells CD4+ T cells in T cells CD4-CD8-T cells in T cells CD4+ CD8+ T cells in T cells CD8+ T cells in T cells NK cells in Leucocytes CD56hiCD16lo in NK cells CD56IoCD16hi in NK cells Basophils in Leucocytes DC in Leucocytes mDC in DC CD1-CD141- in mDC mDC1 in mDC mDC2 in mDC pDC in DC

14/09/2022

Soret et al. Nat Commun. 2021 Jun 10;12(1):3523. doi: 10.1038/s41467-021-23472-7.

Identification of dysregulated molecular pathways in individual pSS patient clusters

304 pSS patients from the PRECISESADS cohort

 \rightarrow 4 distinct clusters of pSS patients defined by 3 gene modules

Soret et al. Nat Commun. 2021 Jun 10;12(1):3523. doi: 10.1038/s41467-021-23472-7.

• C1

Functional annotation of each of 4 clusters of Lupus or Sjögren patients leads to working hypotheses regarding candidate therapeutic targets

Heat maps from transcriptomics data in the blood

Schematic representations of patient clusters

- IFN α pathway
- Combination therapies
- Pleiotropic targets

From target to drug design and optimization

Machine learning to train neural networks for predicting properties of small chemical molecules

- Generative AI to enhance the chemical space
 - Generation of new molecules
 - Retrosynthesis

- **Multitask parallel** prediction of:
 - binding to the target \checkmark (quantitative structure activity relationship, free energy prediction)
 - absorption, metabolism, \checkmark distribution, excretion toxicity
 - stability... \checkmark

Less molecules to synthesize and test in wet labs

Nanome

In vitro validation

- Gene expression
- Immunophenotyping
- CRISPR-Cas9 gene editing
- SiRNA gene K.O

In vivo validation

- Gene editing/silencing
- Tool compound

In silico validation

- Gene K.O
- System perturbation

Quantitative system pharmacology modeling to predict the efficacy of an anti-IFNα Mab (S95021) in cutaneous Lupus

(components of the CLASI A cutaneous scoring)

Quantitative System Pharmacology predicts the efficacy of the S95021 drug candidate to treat cutaneous Lupus

QSP predicts the efficacy of the S95021 Mab in cutaneous lupus, while suggesting the interest of high dosing regimens

-5 10-15-20-25-

Creation of virtual patients by varying parameters related to the targeted biological pathway

• eg levels of IFN and its receptor, immune cells producing or responding to IFN

Causal disease modeling of Sjogren in salivary glands by using Intelligent network computing

Modeling based on transcriptomics data in salivary glands of Sjogren vs Sicca patients

Sjogren in parotid glands

- Identification of master regulators (potential therapeutic targets)
- Computational perturbations to mimick the impact of single drug or combo therapies

Control parotid

Conclusions: A revolution in new drug development

- Supporting decision-making all along drug discovery and development
- Shortening the timelines for the discovery phase
- De-risking the choice of therapeutic targets and drug candidates
- Decreasing the need for wet-lab experiments and clinical studies
- Increasing probabilities of success while reducing costs
- Regulatory acceptance of evidence generated by predictive modeling
- Interest of major agencies (eg FDA and EMA) in Model-Informed Drug development to Refine, Reduce and Replace (3 R's)
- Statement from US authorities (Committee on Appropriations, 2018): « In silico trials protect public health, advance personalized treatment, can be executed quickly and for a fraction of the cost of a full scale live trial »

Artificial intelligence yields new antibiotic

A deep-learning model identifies a powerful new drug that can

February 20 2020

From design to preparation of phase 1 in one to two years

눧 Exscientia

Announces First AI-Designed Immuno-Oncology Drug to **Enter Clinical** Trials

Perspectives: in silico prediction of drug efficacy as an important dimension of computational precision medicine

Patient specificities understood

Drug efficacy and safety predicted across patient heterogeneity

Drug candidate properties predicted

Servier

Audrey Aussy **Emiko Desvaux** Sylvain Fouliard Sandra Hubert **Glenn Gauderat** Mickaël Guedj Laurence Laigle Perrine Soret

Brest University

Jacques-Olivier Pers

Intellomx

Graham Ball Simon Hayworth **Dimitrios Zafeiris**

Rosa

Krishnakant Dasika **Christina Friedrich Vincent Hurez** Katherine Kudrycki Robert Sheehan Mike Reed

Acknowledgements

PRECISESADS Molecular Reclassification to Find **Clinically Useful Biomarkers for** Systemic Autoimmune Diseases

