Defining Design Rules for Next-Generation Snakebite Antivenoms

Rosa webinar, 15th March 2023

Natalie Morris, Johanna Blee, Sabine Hauert

What makes a pharmacodynamically effective antivenom?

Monocled cobra Ton Bangkeaw[/Shutterstock.com](http://shutterstock.com/)

In this talk:

- 1. The pathology of snakebite
- 2. Current and next-generation antivenom production
- 3. Modelling envenomation and treatment
- 4. A framework for antivenom optimisation
- 5. Guidelines for effective antivenom design

Snakebite is a neglected tropical disease

Annually:

- 2.7 million envenomings
- 100,000 deaths
- 400,000 cases of disability

The burden of snakebite is overwhelmingly on developing countries

Russell's viper RealityImages[/Shutterstock.com](http://shutterstock.com/)

<https://doi.org/10.1371/journal.pmed.0050218>

Snakebite causes a range of symptoms

Venom contains a complex mix of toxins

- Multifunctional
	- Local and/or systemic
		- Synergistic
		- Multiple isoforms
	- Varied structures
	- Varied molecular weights: 5 – 200 kDa

Venom compositions vary between and within different species. This gives rise to diverse pathophysiological and PK properties.

There are over 200 species of medically important venomous snakes

Most of these fall into two families:

Elapids Vipers

Black mamba NickEvansKZN[/Shutterstock.com](http://shutterstock.com/)

Typically neurotoxic

- More low molecular weight toxins
- Venom more rapidly absorbs and distributes

Hump-nosed pit viper RealityImages/*[Shutterstock.com](http://shutterstock.com/)*

Typically haemotoxic and cytotoxic

- More high molecular weight toxins
- Venom absorbs more slowly and persists for longer

Antivenoms are currently made from the sera of hyper-immunized animals

- **Expensive**
- Low therapeutic potency
- Batch variability
- Ineffective against necrosis
- High risk of adverse effects
- Requires animal husbandry

Next-generation recombinant antivenoms

In vitro **selection** *Obtain toxin-binding antibodies from variable library*

Recombinant expression *Produce best antibodies in cellular culture*

Recombinant antivenoms *Targeted binders*

Antibody engineering has expanded antivenom design space

- *In vitro selection* \rightarrow scaffold type
- **Antibody humanisation** → immunogenicity
- **Affinity maturation → affinity**
- **Structural engineering** \rightarrow valency, size, half-life

We can produce antivenoms with diverse PK/PD properties

Decreasing size: Increasing elimination rate, increasing tissue perfusion

Antivenom scaffolds span a similarly wide size range to venom toxins themselves

How does antivenom format affect treatment outcome?

Rapid absorption Rapid distribution Faster elimination

Computational simulations can help elucidate venom-antivenom pharmacodynamics

- Are certain scaffolds better suited to treat different types of venoms?
- Are certain scaffolds preferable under particular envenomation scenarios?

We simulated two model venoms

Ton Bangkeaw/[Shutterstock.com](http://shutterstock.com/)

Kurit Afshen/[Shutterstock.com](http://shutterstock.com/)

Elapid – Equatorial spitting cobra

- Low molecular weight (9kDa)
- Neurotoxic
- Rapidly and extensively distributes

Viper – Mangrove pit viper

- High molecular weight (57kDa)
- Haemotoxic
- Distributes slowly, longer half-life

Why compartmental modelling?

- Describes bulk system dynamics through central and peripheral compartments
	- Indicates lethality
	- Granular description
- Can be parameterized with existing venom/antivenom data
- Simple and computationally efficient
	- Fewer parameters
	- Brute force parameter optimisation
	- Can map parameter space to high resolution

The compartmental model

- Body split into central and peripheral compartments
- Following the levels of venom, antivenom, and neutralised venom
- Monovalent and bivalent binding

Model parameterisation

Model parameterised using experimental rabbit data

- Venom parameters taken directly from literature
- Antivenom and neutralised venom parameters predicted based on molecular size using regressions

Predicting antivenom dynamics

• Antivenom $k_{10}/k_{12}/k_{21}$ parameters predicted based on molecular size using regressions

The model allows user-control of numerous parameters

- 3 mg elapid venom
- Treat at 4 hours
- Monovalent nanobody
- 1:3 venom: antivenom dose
- $k_{on} = 1 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$
- $k_{off} = 1 \times 10^{-5} \text{ s}^{-1}$

Simulating variable envenomation scenarios

Snakes can inject variable amounts of venom:

- Applying an elapid venom dose range of $0.25 - 5$ mg/kg
- Treat with 2.5 mg/kg $F(ab')$ antivenom

Simulating variable envenomation scenarios

Snakes can bite in different locations and to different depths:

- Applying 0.5 mg/kg elapid venom
- Treat with 2.5 mg/kg $F(ab')$ ₂ antivenom
- F varies +- 50% over baseline
- Absorption rate varies: T_{max} from $0.5 - 3$ hours

A framework for antivenom optimisation

Defining treatment metrics

- We looked at three metrics to indicate damage:
	- Area under the curve (AUC)
	- Time over threshold (TOT)
	- AUC over a threshold (AUC-OT)

Defining treatment metrics

- We looked at three metrics to indicate damage:
	- Area under the curve (AUC)
	- Time over threshold (TOT)
	- **AUC over a threshold (AUC-OT), applied to peripheral compartment**
- Threshold informed by clinical envenoming studies

Defining the antivenom parameter set

We generated a set of 200,00 theoretical antivenoms, which varied across 5 dimensions:

- **Molecular weight** 15 150 kDa
- **Valency** 1 or 2
- k_{on} 10^{3 -} 10⁶ M⁻¹s⁻¹
- k_{off} 10⁻⁶- 10⁻³ s⁻¹
- **Dose** $-1:1 1:10$

Varying treatment scenario parameters

- Comparing **elapid** and **viper** envenomation
- Simulated **treatment times** ranging hourly from 1-10 h post bite
- **Total of 2 million simulations per snake**

Universal scaffolds

- Antivenoms with lowest 1% AUC-OT at every timepoint
	- High affinity
	- High dose
	- Tolerant of molecular weight & valency
	- More stringent design constraints for viper bite

Universal scaffolds

- Antivenoms with lowest 1% AUC-OT at every timepoint
- Density across parameter space
	- Preference for low molecular weight
	- Preference for high k_{on}

Poorly-performing antivenoms

- Parameter space of antivenoms with highest 50% AUC-OT at every treatment time
- Density across parameter space
	- Low dose, low k_{on}
	- Poor performers across the size range

Time-dependent variations

Viper scaffolds with lowest 1% AUC-OT with different time delays

Visualizing the most effective scaffolds

- Violin plots of universal scaffolds at every timepoint
- Smaller scaffolds offer the most flexible design constraints
	- More effective scaffold solutions found at lower molecular weights

PAWN global sensitivity analysis

- Density-based GSA method
	- Good for highly skewed outputs
- What design parameters influence treatment outcome the most?
- Sensitivity indices indicate the influence of a given parameter on a model output
	- **Bigger index = bigger influence**

Example model output – elapid, 3 hours

PAWN sensitivity analysis

- Dummy parameter sets threshold of influence
- Testing how sensitivity changes over time
- **Looked at the full output distribution**
	- k_{on} most important overall
- **Looked at slices of the distribution**
	- k_{off} has a bigger impact on poorly-performing antivenoms

Guidelines for effective antivenom design

- 1. Optimised antivenoms can span a **wide area of design space**
- 2. Treatment outcome **primarily mediated by affinity (kon)**
- **3. Size has a minimal direct impact, but small scaffolds can be more flexibly designed**
- **4. Higher doses are better**. Small scaffolds out-perform larger scaffolds when dosed sufficiently.
- **5. Viper and elapid** systems are optimally treated by the **same types of scaffold**

Bivalent nanobody 30 kDa

Monovalent scFv 27 kDa

T

Summary

- 1. Venom and antivenom pharmacodynamics is complex
- 2. We have built a computational model of systemic snakebite envenomation and treatment
- 3. It is parameterised to allow user-control of antivenom size, affinity, valency, dosing schedules, and venom type
- 4. We have established a computational framework to optimise antivenom design
- 5. Parameter optimisation shows that antivenom affinity is key. Molecular size doesn't have a huge direct impact, but smaller scaffolds allow for more flexible treatment

Mangshan pit viper Henner Damke - [stock.adobe.com](https://stock.adobe.com/uk/)

Western green mamba Vencav - [stock.adobe.com](https://stock.adobe.com/uk/)

Banded sea krait Ead72 - [stock.adobe.com](https://stock.adobe.com/uk/)

Thanks for listening!

Special thanks to Sabine Hauert, Johanna Blee, and all members of the swarm engineering group

Feel free to contact me at: natalie.morris@bristol.ac.uk All code (Python) available via the below publications

Painted saw-scaled viper AbuMazna[/Shutterstock.com](http://shutterstock.com/)

Mozambique spitting cobra Stu Porter/[Shutterstock.com](http://shutterstock.com/)

Boomslang Petra Christen[/Shutterstock.com](http://shutterstock.com/)

Morris et al, 2022. Developing a computational pharmacokinetic model of systemic snakebite envenomation and antivenom treatment**.** Toxicon, 215, pp. 77-90. https://doi.org/10.1016/j.toxicon.2022.06.006.

Morris et al, 2023. Global parameter optimisation and sensitivity analysis of snake antivenom pharmacokinetics and pharmacodynamics. bioRxiv. doi: https://doi.org/10.1101/2023.03.13.53235 4