Leveraging machine learning strategies for nonlinear mixed effects model selection

Robert Bies

University at Buffalo

Local search: "step-wise" regression

- Base (covariate free) model
 - Keep known physiology in mind
 - Compare compartment structures
 - Residual error structure to minimize systematic errors
 - Inter-individual variability where identifiable
 - Lag-time or mixture models if relevant
- Final model
 - Baseline structure
 - Single covariate forward addition
 - Single covariate backward elimination

Local search: "step-wise" regression

- Base (covariate free) model
 - Keep known physiology in mind
 - Compare compartment structures
 - Residual error structure to minimize systematic errors
 - Inter-individual variability where identifiable
 - Lag-time or mixture models if relevant
- Final model
 - Baseline structure
 - Single covariate forward addition
 - Single covariate backward eliminatic...

Wade JR, Beal SL, and Sambol NC. "Interaction between structural, statistical, and covariate model in population pharmacokinetic analysis", J of Pharmacokinetics and Biopharmaceutics, 22:

Br J Clin Pharmacol 2013 Jun 17 Epub ahead of print

Figure 1. Diagram of model building algorithm from Volume 5 NONMEM manuals. Reproduced with permission from Icon PLC. In the original description of the algorithm, statistical features (variance terms) were added after the structure was final for practical reasons.

Potentially large solution space for a Pop PK model example

Ν	Initial conditions for NONMEM
2	Compartment structure
Ζ	1 or 2 compartments
2	lag-time (yes/no)
4	Weight and age covariate on clearance
4XZ	None, additive, proportional, power function
4 0	Weight and age covariate on volume
4XZ	None, additive, proportional, power function
2x2	Sex covariate on clearance and volume of distribution
2.42	Between subject variability on CL, V and Ka
5XZ	absent or exponential
С	Residual error structure
3	additive, proportional, combined

98304

Potentially large solution space for a Pop PD model example

Total number of models:

4*4*4*4*4*4*4*4*4*3 = 3145728 possible combinations

Ismail et al, JPKPD 2002 49(2)243-256

- What are they?
 - A means of evaluating factors in a model where more than one factor can be changed at a single step
 - Partially automated to allow a more "complete" evaluation of the full grid search space for a particular candidate model

Holland, J.H. (1984). Genetic Algorithms and Adaptation. In: Selfridge, O.G., Rissland, E.L., Arbib, M.A. (eds) Adaptive Control of Ill-Defined Systems. NATO Conference Series, vol 16. Springer, Boston, MA. <u>https://doi.org/10.1007/978-1-4684-8941-5_21</u> Holland, J. H. [1975]. "Adaptation in Natural and Artificial Systems," University of Michigan Press, Ann Arbor.

- Approach:
 - Replicate "survival of the fittest"
 - Evolutionary process is imposed on the selection and "survival" of the "best" model descriptions
 - Calculate an indicator of how "healthy" a particular individual model in the population is
 - Utilized in multiple fields e.g. placing cell phone towers, predicting stock performance etc.

Holland, J.H. (1984). Genetic Algorithms and Adaptation. In: Selfridge, O.G., Rissland, E.L., Arbib, M.A. (eds) Adaptive Control of III-Defined Systems. NATO Conference Series, vol 16. Springer, Boston, MA. <u>https://doi.org/10.1007/978-1-4684-8941-5_21</u> Holland, J. H. [1975]. "Adaptation in Natural and Artificial Systems," University of Michigan Press, Ann Arbor.

- "good" characteristics become more likely
- Efficient at finding "good" regions of solution space
- Slow to converge local "best"
- Adaptations
 - Elitism
 - Retain best candidate to next generation
 - Local search hybrid
 - Compare candidate with each model differing by 1 bit
 - Every 'n' generations

- Implementation in the context of population PK/PD/Disease Progress modeling (Bies and Sale 2006, JPP August, Sherer, Sale and Bies 2012 JPP)
- Potential models are reduced to a bit-string (base-2 number assembly) that reflects the model "genetic" code
- Each model feature (e.g., number of compartment, covariate relationship) is coded as a base 2 number
 - If there are 2 options the values are 0 or 1 [(0) (1)], if more than two options then one has multiple bits eg. [(0 0), (0 1), (1 0), (1 1)]
- Features are strung together to produce aforementioned bit string
- Model can be reproduced based on the bit string that results

Figure 3. Coding of model features and translation into a model. If only two options are examined for a feature (e.g., the effect of Gender on Clearance) only 1 bit will be needed for that gene. If more than two options are examined (e.g., 4 for the basic structure, number of compartments) more than 1 bit is required for that gene. The final genome for each model is constructed by concatenating all the genes together into a bit string.

Model Feature	odel Feature Feature Options		NONMEM code
	1-cmt, 1 st order absorption	0,0	Advan2 Trans2
	1-cmt, 1 st order absorption, lag	0,1	Advan2 Trans2, alag
Number of Compartments	2-cmt, 1 st order absorption	1,0	Advan4, Trans4
	2-cmt, 1 st order absorption, lag	1,1	Advan4, Trans4, alag
	No Effect	0,0	""
Effect of Weight	Linear Effect	0,1	"+THETA()*WT"
on Clearance	Power Model Effect	1,0	"*WT**THETA()"
	Exponential effect	1,1	"*EXP(THETA()*WT)"

- Single-objective user defined criteria, with defaults
 - Default composite fitness measure
 - -2 x log-likelihood
 - Penalty per model variable (10 points)
 - Penalties for failure to converge (400), covariance (400), and correlation (300)
- Multi-objective
 - Pareto front for pairs of objectives
 - Eg. -2xLL vs. # parameters

Br J Clin Pharmacol 2013 Jun 17 Epub ahead of print

Figure 4. Simple Genetic algorithm. The algorithm is initialized with a random population. "Parents" for the next generation are selected (with replacement) for the next generation proportional to the user defined "fitness" of the model. These "parent" models are then paired off and undergo cross over and mutation to form the next generation of models. 1.2012 Jun 17 Englished of print 215x279mm (96 x 96 DPI)

Br J Clin Pharmacol 2013 Jun 17 Epub ahead of print

Single-objective, hybrid genetic algorithm (SOHGA) vs. step-wise approach

- Pharmacokinetic data for 7 compounds
 - Identical model options / decisions
- Compare information criteria of final models
 - Compare model structures

Sample sizes

Compound	Administration	Number of patients	Number of concentration
	method		measurements
Citalopram	IV	331	1,324
DMAG	IV	67	1,148
Escitalopram	Oral	172	473
CATIE			
Olanzapine	Oral	523	1,527
Perphenazine	Oral	156	421
Risperidone	Oral	490	1,236
Ziprasidone	Oral	233	568

Model structure and covariate options

Compound	NONMEM model structures tested	First-order (FO) or first-order conditional (FOCE) estimation	Number of covariates collected
Citalopram, IV	ADVAN3, TRANS4	FOCE with interaction	7
DMAG, IV	ADVAN3, TRANS4 ADVAN11, TRANS4 (with potential for inter-occasion variability)	FOCE with interaction	10
Escitalopram, oral	ADVAN2, TRANS2 ADVAN4, TRANS4	FOCE with interaction	7
Olanzapine, oral	ADVAN2, TRANS2 ADVAN4, TRANS4	FOCE with interaction	9
Perphenazine, oral	ADVAN2, TRANS2 ADVAN4, TRANS4	FOCE with interaction	9
Risperidone, oral	ADVAN2, TRANS2 ADVAN4, TRANS4 (with 1, 2, or 3 clearance subpopulations)	FO	9
Ziprasidone, oral	ADVAN2, TRANS2	FOCE with interaction	9

Model convergence: SOHGA vs. step-wise

	Convergence			
	Final step-wise model	Best SOHGA candidate		
Citalopram, IV	Successful	Successful		
DMAG, IV	Successful	Successful		
Escitalopram, oral	Successful	Successful		
Olanzapine, oral	Required fixing K _a early in model building process	Successful		
Perphenazine, oral	Required fixing K _a early in model building process	Successful		
Risperidone, oral	Required fixing K _a early in model building process	Successful		
Ziprasidone, oral	Required fixing K _a early in model building process	Successful		

Model convergence: SOHGA vs. step-wise

	Convergence		Covariance step (condition number)		
	Final step-wise model	Best SOHGA candidate	Final step-wise model	Best SOHGA candidate	
Citalopram, IV	Successful	Successful	Unsuccessful (N/A)	Successful (2,830)	
DMAG, IV	Successful	Successful	Successful (20)	Successful (25)	
Escitalopram, oral	Successful	Successful	Successful (39)	Successful (9)	
Olanzapine, oral	Required fixing K _a early in model building process	Successful	Successful (12)	Successful (50)	
Perphenazine, oral	Required fixing K _a early in model building process	Successful	Unsuccessful (N/A)	Successful (212)	
Risperidone, oral	Required fixing K _a early in model building process	Successful	Successful (60)	Successful (1.17x10 ⁶)	
Ziprasidone, oral	Required fixing K _a early in model building process	Successful	Successful (3)	Successful (5)	

Fits to data: SOHGA vs. step-wise

- 4 of 7 compounds have >10 point improvement with genetic algorithm approach
 - 10 point penalty for 1 parameter in SOHGA

Compound	Final stepwise model	Best SOHGA candidate model	AIC _{SOHGA} – AIC _{stepwise}
Citalopram, IV	AIC = 5,391.9	AIC = 5,369.6	-22.3
DMAG, IV	AIC = 9,871.7	AIC = 9,849.4	-22.3
Olanzapine, oral	AIC = 10,365.8	AIC = 9,895.3	-470.5
Risperidone, oral	AIC = 5,131.1	AIC = 4,853.0	-278.1

Fits to data: SOHGA vs. step-wise

- 4 of 7 compounds have >10 point improvement with genetic algorithm approach
- 3 of 7 have <10 point change

Compound	Final stepwise model	Best SOHGA candidate model	AIC _{SOHGA} – AIC _{stepwise}
Citalopram, IV	AIC = 5,391.9	AIC = 5,369.6	-22.3
DMAG, IV	AIC = 9,871.7	AIC = 9,849.4	-22.3
Escitalopram, oral	AIC = 2,737.7	AIC = 2,737.6	-0.1
Olanzapine, oral	AIC = 10,365.8	AIC = 9,895.3	-470.5
Perphenazine, oral	AIC = 560.7	AIC = 555.9	-4.8
Risperidone, oral	AIC = 5,131.1	AIC = 4,853.0	-278.1
Ziprasidone, oral	AIC = 4,463.2	AIC = 4,758.7	-4.5

Fits to data: SOHGA vs. step-wise

- 4 of 7 compounds have >10 point improvement with genetic algorithm approach
- 3 of 7 have <10 point change
- 0 of 7 are worse

Compound	Final stepwiseBest SOHGAmodelcandidate model		AIC _{SOHGA} – AIC _{stepwise}
Citalopram, IV	AIC = 5,391.9	AIC = 5,369.6	-22.3
DMAG, IV	AIC = 9,871.7	AIC = 9,849.4	-22.3
Escitalopram, oral	AIC = 2,737.7	AIC = 2,737.6	-0.1
Olanzapine, oral	AIC = 10,365.8	AIC = 9,895.3	-470.5
Perphenazine, oral	AIC = 560.7	AIC = 555.9	-4.8
Risperidone, oral	AIC = 5,131.1	AIC = 4,853.0	-278.1
Ziprasidone, oral	AIC = 4,463.2	AIC = 4,758.7	-4.5

Model structure: SOHGA vs. step-wise

• Compartment structure

• 6 of 7 (86%) agree

Compound	Final step-wise model	Best SOHGA candidate
Citalopram, IV	2	2
DMAG, IV	3	3
Escitalopram, oral	1	1 with estimated Ka
Olanzapine, oral	1	1 with estimated Ka
Perphenazine, oral	1	1 with estimated Ka
Risperidone, oral	1 with 3 component mixture on CL	2 with 2 component mixture on CL
Ziprasidone, oral	1	1

pyDarwin - Impetus

- Challenges with visual basic coding (sunset of code) for original SOHGA implementation
- Re-coded the GA in R using a R-shiny gui (Ismail 2022)
 - Issues with
 - model search space limitations
 - Better at search of space for tumor growth (n=1) and response model, worse at pop PK model example (n=1)
 - github.com/mhismail/nmga

Ismail et al, JPKPD 2002 49(2)243-256

pyDarwin - Impetus

- FDA HHS grant announcement
 - Development of a model selection method for population pharmacokinetics analysis by deep-learning based reinforcement learning (RFA-FD-21-027)
- GA is a "brute force" global optimization algorithm
- Opportunity to explore other ML algorithms for model identification
- https://github.com/certara/pyDarwin

pyDarwin - Model Selection

	Model Selection	Parameter Estimation
Search Space	Discrete	Continuous
Start	Trivial Model	Initial Estimate

Traditional PK/PD Model Selection (Downhill Method):

- Start from the base model, then add features (COM#, covariate, etc.)
- Doesn't consider the complex interaction between the structural, covariate, and random effects
- Assumes the optimal solution is continuously downhill from every other point in the search space

Machine Learning Model Selection:

• Start from multiple random models, test the models, have better idea about the model structure, update the information to the next generation and repeat this procedure

Sale M, Sherer EA.. Br J Clin Pharmacol. 2015 Jan;79(1):28-39 Wade JR, Beal SL, Sambol NC. *J Pharmacokinet Biopharm*. 1994;22(2):165-177. Chen X, Hamdan A, Wang S, et al. 2022. PAGE 30 (2022) Abstrt 10091 pyDarwin Handout by Certara

Slide courtesy of Xinnong Li, Ph.D. candidate UB

pyDarwin - Algorithms

- Genetic Algorithm¹
- Gaussian Process²
- Random Forest²
- Exhaustive Search
- Random Tree with Gradient Boosting²
- Particle Swarm Optimization³

28 **1. Implementation with DEAP, 2. Implementation with scikit-optimize, 3. Implementation with pySwarms** https://certara.github.io/pyDarwin/html/Overview.html

pyDarwin-Genetic Algorithm

Workflow:

- Randomly generate initial candidates
- Select the best parents (using **tournament selection**) from the candidate pool
- Using 'mutation' and 'crossover' to create next candidate pool
- Repeat the process until no further improvement was observed

pyDarwin Genetic Algorithm (GA)

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_parent_selection.htm Sale M, Sherer EA.. Br J Clin Pharmacol. 2015 Jan;79(1):28-39 Ismail M, Sale M, Yu Y, et al. J Pharmacokinet Pharmacodyn. 2022 Apr;49(2):243-256.

Crossover: Swap model information with probability P_{crossover}

Parent Chromosomes

Model	Fitness	N _{CMT}	Weight on CL	Weight on V	Age on CL	Age on V	Sex on CL	Sex on V	Error Model
800	94	2	None	Linear	Exponential	None	Exponential	None	Combined
343	98	1	Exponential	None	None	Linear	None	Linear	Proportional

Children Chromosomes										
Model	Fitness	Fitness N _{CMT} Weigh CL		Weight Age on CL on V		Age on V	Age Sex on CL on V		Error Model	
800	94	2	Exponential	None	None	Linear	None	None	Combined	
343	98	1	None	Linear	Exponential	None	Exponential	Linear	Proportional	

Mutation: change model information with probability P_{mutation}

pyDarwin - Gaussian Process (GP)

Workflow:

- For the unknown objective function, we first treat it as a random function and place a **prior** over it. After getting some observations, the prior will be updated to the **posterior distribution**.
- Apply the **acquisition function** to choose the next query point. In this study, the acquisition function is $x_{t+1} = arg \max u(x)$, where u(x) is equal to $EI(\stackrel{x}{x}) = \mathbb{E}[f(x) - f(x_t^+)]$
- Sample the next observation y_{t+1} at x_{t+1}
- Repeat the process until the final recommendation was made

https://scikit-optimize.github.io/stable/auto_examples/bayesian-optimization.html

pyDarwin - Random Forest (RF)

Workflow (regression):

- Bootstrapping randomly select models to generate trees
- Aggregating split the trees by randomly picked features
- Run the record down each tree and do the **averaging** get the averaged fitness value
- Find the next query point based on the acquisition function and update the ensemble of decision trees
- After N queries, the algorithm makes the final recommendation which represents the best estimate of optimizer

Slide courtesy of Xinnong Li, Ph.D. candidate UB

B. Shahriari, **B**2Swersky, Z. Wang, et al, in *Proceedings of the IEEE*, vol. 104, no. 1, pp. 148-175, Jan. 2016. https://levelup.gitconnected.com/random-forest-regression-209c0f354c84

c. True function and its approximation with uncertainty Random Forest

pyDarwin - Local Downhill Search

- Local downhill search is implemented to ensure an efficient selection of the best possible models
- Do the local-1-bit search and local-2bit search every 5 generations and at the end
- For N bits, local-1-bit search needs to run N models, local-2-bit search needs to run N*(N-1)/2 models
- Local-2-bit search is necessary to have confidence that true best model is discovered (still no guarantee)

a. Local downhill search appeared in the searching process

Begin local exhaustive 2-bit search, generation = 05, step =	8
Model for local exhaustive search = 05D06, phenotype = Ordere	edD
, ('Q~COHORT', 1), ('V3~COHORT', 1), ('CL~WT', 0), ('V2~WT',	1)
, 2), ('CL~COHORT', 1), ('V2~COHORT', 1), ('BOVKA', 1), ('RES	SER
29 models in local exhaustive search, 1 bits	
435 models in local exhaustive search, 2 bits	
	(

b. A chromosome example

- Simulation Model:
- Linear 2 compartment, first order absorption (ADVAN4)
 - Typical Value (TV) for Clearance (CL) = 200 L/hr
 - TV for Central Volume (Vc) = 1000 L
 - TV for Ka of 2/hr,
 - TV k23 and k32 of 0.2/hr
 - TVALAG of 0.2/hr
 - Log normal between subject variance of 0.2 (all parameters)
- True covariates included:
 - CL~ (Weight, bilirubin, race and ALT)
 - Vc ~Weight
 - Ka~age
- Three additional covariates were included that did not influence the model

- Algorithms utilized:
 - Gaussian process/Bayesian Optimization (GP)
 - Random Forest (RF)
 - Gradient Boosted Random Tree (GBRT)
 - Genetic algorithm (GA)
 - Exhaustive search

- The search space for the model selection consisted of 10 dimensions:
- Number of compartment (1,2,3)
- Volume as a function of Weight (yes|no)
- Volume as a function of Sex (yes | no)
- Clearance as a function Weight (yes | no)
- Clearance as a function Age (yes | no)
- Between subject variability (BSV) on Ka (yes|no)
- K23/K32 (if present) as a function of Weight (yes|no)
- Absorption model (first order|zero order|combined zero, then first order) vs Absorption lag time (yes|no)
- BSV on zero order absorption or lag time, if present (yes|no)
- Residual error model (additive | proportional + additive)
- ~13000 candidate models

Sale et al, PAGE 2022

- The search criteria included:
 - Objective function value (OFV)
 - Parsimony penalty (10 points for each estimated parameter, THETA, OMEGA and SIGMA)
 - 100 point penalties for:
 - failing to converge
 - failing the covariance step
 - failing the correlation test
 - condition number > 1000

Sale et al, PAGE 2022

- Determination of "true optimal" model
- True optimal model (from exhaustive search):
 - two compartment
 - zero-order absorption
 - combined proportional + additive residual error
 - no covariates
 - Fitness: 4818
- Simulation model had:
 - higher (worse) reward than the "true" optimal model
 - failed the covariance step
 - incurred a 300 point penalty (fitness 5118)
 - 100 each for:
 - covariance
 - correlation
 - condition number

Sale et al, PAGE 2022

- All ML methods failed to identify the "true" optimal model
- All identified a 2-compartment model, without the zero-order infusion
- The 1-bit local search still did not result in the true optimal model (4922 fitness)
- A 2-bit search was implemented, where all combinations of 2-bit changes were examined
- This resulted in 120 new models (Table 1) (16 bits, [N²-N)/2])
- Best fitness with 2-bit downhill search for all ML methods 4818

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	crash	crash	crash	crash	crash	crash	crash	crash	crash	crash	crash	crash	crash	crash	crash	crash
2		crash	5165.69	4827.70	crash	5032.32	5417.99	crash	4924.46	4923.49	5148.49	5167.12	4928.49	24018.29	4818.16	5776.74
3			4922.70	4928.74	crash	4922.60	4922.60	4924.50	4924.66	4924.39	5158.77	5128.77	5128.77	6716.45	4918.22	5666.87
4				4932.68	crash	4932.58	4932.58	crash	4934.63	crash	5178.74	5138.74	5138.74	5144.30	4927.68	5647.75
5					4918.77	crash	crash	crash	crash	crash	crash	crash	crash	crash	crash	crash
6						99999.00	5032.60	4925.97	4926.18	4928.11	5152.60	5132.60	5132.60	crash	4922.13	5670.00
7							5032.64	4925.97	4926.18	4928.11	5152.60	5132.60	5132.60	crash	4922.13	5670.00
8								4926.09	crash	4930.31	5154.50	crash	5134.50	crash	4923.91	5669.31
9									4926.30	4930.41	crash	5134.66	5134.66	5310.48	4924.08	5669.31
10										4928.20	5154.40	5134.39	5134.40	5548.57	4923.87	5674.41
11											5152.70	5138.77	crash	5441.17	5156.14	6006.24
12												5132.70	crash	32929.81	5128.22	5976.87
13													5132.70	5137.88	4926.14	5776.24
14														5315.49	crash	6233.71
15															4922.22	5662.69
16																5670.06

\$INPUT ID TIME ADDL OCC II DV EVID MDV AMT ORAL RACE COHORT SEX LASTNEG FIRSTPOS \$DATA {data_dir}/finalm6_3.CSV IGNORE=# \$SUBROUTINE {ADVAN[1]}

ŞPK

CWTKG = WEIGHT/76.6 CBMI = BMI/25.4 CWTKGZERO = WEIGHT - 76.6 BMIZERO = BMI-25.4

{BOVKA[1]}

IF (OCC.EQ.1) THEN KA=24*THETA(5)*EXP(ETA(5)) F1=THETA(4)*EXP(ETA(4)) ENDIF

IF (OCC.GE.2) THEN
KA=24*EXP(ETA(3))*THETA(3){KA~BMI[1]} {KA~COHORT[1]} {KA~WT[1]} *EXP(BOVKA)
F1=1
ENDIF

TVCL=24*THETA(1){CL~WT[1]}{CL~BMI[1]}{CL~COHORT[1]} CL=TVCL*EXP(ETA(1)) TVV2=THETA(2){V2~WT[1]}{V2~BMI[1]}{V2~COHORT[1]} V2=TVV2*EXP(ETA(2)) K=CL/V2

{ADVAN[2]}

S2=V2

https://certara.github.io/pyDarwin/html/Overview.html

Slide courtesy of Xinnong Li, Ph.D. candidate UB

- Options file
- specifies
 - Author
 - Algorithm
 - Population size
 - Parallelprocesses
 - # per generation
 - # of generations
 - Penalties
 - nmfe??.bat path
 - Timeout
 - Post processing (python/R code for additional penalties etc.)

```
"author": "Certara",
"algorithm": "EX",
"exhaustive_batch_size": 100,
"population_size": 8,
"num_parallel": 4,
"crash_value": 99999999,
```

{

ļ

"penalty": {
 "theta": 10,
 "omega": 10,
 "sigma": 10,
 "convergence": 100,
 "covariance": 100,
 "correlation": 100,
 "condition_number": 100,
 "non_influential_tokens": 0.00001
},

"remove_run_dir": false,

```
"nmfe_path": "c:/nm744/util/nmfe74.bat",
"model_run_timeout": 1200
```

- Template file
- Specifies
 - Control stream
 - Model structure
 - Location of swappable tokens

\$PROBLEM 2 compartment fitting \$INPUT ID TIME AMT DV WTKG GENDER AGE DROP {data_dir}/dataExample1.csv IGNORE=@ \$DATA **\$SUBROUTINE ADVAN2** \$ABBR DERIV2=N0 \$PK CWTKG = WTKG/70 ;; CENTERED ON ONE CAGE = AGE/40;; thetas out of sequence TVV2=THETA(2){V2~WT[1]} {V2~GENDER[1]} V2=TVV2*EXP(ETA(2)) TVCL= THETA(1) {CL~WT[1]} CL=TVCL*EXP(ETA(1)) K=CL/V2 TVKA=THETA(3) KA=TVKA {KAETA[1]} = V2/1000S2 $\{ALAG[1]\}$ \$ERROR REP = IREPIPRED =F $IOBS = F \{RESERR[1]\}$ Y=I0BS \$THETA ;; must be one THETA per line. (0.001,100) ; THETA(1) CL UNITS = L/HR (0.001,500) ; THETA(2) V UNITS = L (0.001, 2); THETA(3) KA UNITS = 1/HR $\{V2 \sim WT[2]\}$;;; comment must consist of more than one word

{V2~GENDER[2]} ;;; otherwise it's a definition, and it will push you back
{CL~WT[2]}
{ALAG[2]}

- Tokens file
- Specifies
 - elements to be substituted into tokens for each of the options selected
 - Each token is named and sequenced using the json format

{

Select structural models and which covariates to include

🗮 Darwin Search properties										-		×
General	Model templa	ate setup										
Data ⊡ Model template	Parametrizatior	1	C Micro	Cleara	ance							
İ -ADVAN2 │	Show	One cova	riate per pag	је								
-AGE	Hide unused parameters											
	Simplified ADVAN table view											
	Enable ADVA	Ns										
-WT -AGE -CLCR		ADVAN1	ADVAN2	ADVAN3	ADVAN4	ADVAN10	ADVAN11	ADVAN12				
	Enable covariates											
Sigmas	wт	Г	v	Г	v	Г	Г	Г				
Downhill step Penalties	AGE	Г	V	Г	V	Г	Г	Г				
Postprocessing	CLCR	Г		Г	V	Г	Г	Г				
Directories GA setup	SEX	Г	v	Г	V	Г	Г	Г				
Model cache Custom options	RACE	Г	Γ	Г		Г	Г	Г				
	Help								Save		Cancel	

Penalty/Fitness/Cost function

🗶 Darwin Search properties				_		×
General	Penalties					
Data	Use default pyDarwin penalties					
Model template	- Depalty added to fitness for					
□-ADVAN2	Penalty added to incress for					
-wt	each estimated THETA	10 ?				
-AGE -CLCR	each estimated OMEGA	10 ?				
L _{SEX}	each estimated SIGMA	10 ?				
-ADVAN4						
-wt	failing to converge	100 ?				
-AGE	failing the covariance step	100 ?				
-CLCR	·					
-SEX	any off-diagonal element of the correlation matrix being off	100 ?				
Template extras	the condition number being > 1000	100 2				
Sigmas	the condition number being > 1000	100 :				
Downhill step	any tokens not influencing the control file	1e-05 ?				
Penalties						
Postprocessing	Value of fitness assigned when model output is not generated	99999999 ?				
Directories						
GA setup						
Model cache						
Custom options						
	Help		Save	C	Cancel	

Multi-objective GA optimization

• Optimize over many criteria

- Decisionmakers
 - preferred not to be presented with a single "best" option

Multi-objective genetic algorithm

• Front in -2xLL vs. # parameters space

Multi-objective genetic algorithm

• Front in -2xLL vs. # parameters space

Sherer et al PAGE 2012

Multi-objective genetic algorithm

Ziprasidone

Sherer et al PAGE 2012

Multi-objective genetic algorithm – IV Citalopram

Sherer et al PAGE 2012

Conclusions

- ML methods typically selected the better models vs stepwise selection (human driven)
- One bit downhill search is not always sufficient to discover the numerically optimal model
- Multi-objective optimization (GA) provides insight into nondominated solutions for specific metrics

Acknowledgements

Certara

- Mark Sale M.D.
- James Craig M.S.
- Keith Nieforth Pharm.D.
- Pavel Polozov
- Indiana University
 - Eric Sherer Ph.D.
- University at Buffalo
 - Mohamed Ismail Ph.D. (ePD)
 - Xinnong Li M.S.
 - Sihang Liu Ph.D. (BMS)
 - Nikhil Pillai Ph.D. (Sanofi)
- FDA
 - Liang Zhou Ph.D.
 - Fenggong Wang Ph.D
 - Kairui Feng Ph.D.
 - Meng Hu Ph.D.
- FDA grant (U01FD007355)