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Local search:
“step-wise” regression

e Base (covariate free) model
e Keep known physiology in mind

¢ Compare compartment structures
e Residual error structure to minimize systematic errors
* Inter-individual variability where identifiable

* Lag-time or mixture models if relevant

* Final model
* Baseline structure
* Single covariate forward addition
* Single covariate backward elimination
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Fiqure 1. Dlagram of model bullding algorithm from Volume 5 NONMEM manuals. Reproduced with
permission from Icon PLC. In the original description of the algorithm, statistical features (vanance terms)
were added after the structure was final for practical reasons.



Potentially large solution space for a
Pop PK model example

N Initial conditions for NONMEM
Compartment structure
1 or 2 compartments
2 lag-time (yes/no)
Weight and age covariate on clearance
None, additive, proportional, power function
Weight and age covariate on volume
None, additive, proportional, power function
2x2 Sex covariate on clearance and volume of distribution
Between subject variability on CL, V and Ka
absent or exponential
Residual error structure
additive, proportional, combined

2

4x2

4x2

3x2

98304



Potentially large solution space for a

Pop PD model example

Total number of models:

4*4*474*4*4*4%4*4*4*3 = 3145728 possible combinations

Ismail et al, JPKPD 2002 49(2)243-256

l— Additive vs Proportional vs Combined Error Models

IV on Tau of group 2 (None, Additive, Proportional, Exponential)
IV on K of group 2 (None, Additive, Proportional, Exponential)
[IV on Tau of group 3 (None, Additive, Proportional, Exponential)

IV on K of group 3 (None, Additive, Proportional, Exponential)
[IV on Tau of group 4 (None, Additive, Proportional, Exponential)
IIV on K of group 4 (None, Additive, Proportional, Exponential)

IV on LambdaO (None, Additive, Proportional, Exponential)
IV on Lambda1 (None, Additive, Proportional, Exponential)
[V on VO (None, Additive, Proportional, Exponential)

4 model structure combination:

Simeoni Growth + Cell Distribution Killing
Koch Growth + Cell Distribution Killing
Simeoni Growth + Signal Distribution Killing
Koch Growth + Signal Distribution Killing



Genetic algorithms

* What are they?

* A means of evaluating factors in a model where more than one factor can be
changed at a single step

 Partially automated to allow a more “complete” evaluation of the full grid
search space for a particular candidate model

Holland, J.H. (1984). Genetic Algorithms and Adaptation. In: Selfridge, O.G., Rissland, E.L., Arbib, M.A. (eds) Adaptive Control of Ill-Defined Systems. NATO
Conference Series, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8941-5 21
Holland, J. H. [1975]. “Adaptation in Natural and Artificial Systems,” University of Michigan Press, Ann Arbor.



https://doi.org/10.1007/978-1-4684-8941-5_21

Genetic algorithms

* Approach:

Replicate “survival of the fittest”

Evolutionary process is imposed on the selection and “survival” of the “best”
model descriptions

Calculate an indicator of how “healthy” a particular individual model in the
population is

Utilized in multiple fields e.g. placing cell phone towers, predicting stock
performance etc.

Holland, J.H. (1984). Genetic Algorithms and Adaptation. In: Selfridge, O.G., Rissland, E.L., Arbib, M.A. (eds) Adaptive Control of lll-Defined Systems. NATO
Conference Series, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8941-5 21
Holland, J. H. [1975]. “Adaptation in Natural and Artificial Systems,” University of Michigan Press, Ann Arbor.



https://doi.org/10.1007/978-1-4684-8941-5_21

Genetic algorithms

* “g00d” characteristics become more likely
* Efficient at finding “good” regions of solution space
* Slow to converge local “best”

* Adaptations
* Elitism
* Retain best candidate to next generation
* Local search hybrid

 Compare candidate with each model differing by 1 bit
* Every ‘n’ generations



Genetic algorithms

. ImBIementation in the context of population PK/PD/Disease Progress modeling (Bies and Sale
2006, JPP August, Sherer, Sale and Bies 2012 JPP)

* Potential models are reduced to a bit-string (base-2 number assembly) that reflects the model
“genetic” code

. Eachbmodel feature (e.g., number of compartment, covariate relationship) is coded as a base 2
number

* If there are 2 options the values are 0 or 1 [(0) (1)], if more than two options then one has multiple bits
eg.[(00),(01),(10),(11)]

* Features are strung together to produce aforementioned bit string

* Model can be reproduced based on the bit string that results
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Select feature

Gene 1, # of compartments, code is 0,1;

(0,0)=1 compartment, first order absorption
(0,1,)=1 compartment, first order absorption, lag
(1,0)= 2 compartment, first order absorption
(1,1,)=2 compartment first order absorption, lag

Insert code for selected feature into model template

$PROB GA MODEL
$SUBS ADVAN3 TRANS1

Compile and run resulting model

Adapted from
Br J Clin Pharmacol 2013 Jun 17 Epub ahead of print

Figure 3. Coding of model features and translation Into 2 medel. If only two options are examined for a
feature (e.q., the effect of Gender on Clearance) only 1 bit will be needed for that gene. If more than two
options are examined (e.q., 4 for the basic structure, number of compartments) more than 1 bit Is required
for that gene. The final genome for each model Is constructed by concatenating all the genes together into
a bit string.



Model Feature Feature Options Bit NONMEM code
string
code
1-cmt, 15t order 0,0 Advan2 Trans2
absorption
1-cmt, 15t order 0,1 Advan2 Trans2, alag
absorption, lag
Number of 2-cmt, 1t order 1,0 Advan4, Trans4
Compartments absorption
2-cmt, 1st order 1,1 Advan4, Trans4, alag
absorption, lag
No Effect 0,0 “
Effect of Weight Linear Effect 0,1 “+THETA()*WT”
on Clearance Power Model Effect 1,0 “*WT**THETA()”
Exponential effect 1,1 “*EXP(THETA()*WT)”

Adapted from: Br J Clin Pharmacol 2013 Jun 17 Epub ahead of print




Genetic algorithms

* Single-objective — user defined criteria, with defaults

* Default composite fitness measure
* -2 x log-likelihood

* Penalty per model variable (10 points)

* Penalties for failure to converge (400), covariance (400), and
correlation (300)

* Multi-objective
* Pareto front for pairs of objectives
* Eg. -2XLL vs. # parameters
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Br J Clin Pharmacol 2013 Jun 17 Epub ahead of print



Run NONMEM

Create new {better)
population of Calculate fitness
models

Best Model Add best
in each Hicdals
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Fiqure 4. Simple Geretic algonthm. The algorithm Is Initialized with a random population. "Parents” for the
next generation are selected (with replacement) for the next generation proportional to the user defined
“fitness” of the model. These “parent” models are then paired off and undergo cross over and mutation to
form the next generation of models.

Br J Clin Pharmacol 2013 Jun 17 Epub ahead of print ~ 215%279mm (96 x 56 DPI)



Single-objective, hybrid genetic
algorithm (SOHGA)
VS.
step-wise approach

 Pharmacokinetic data for 7 compounds
|dentical model options / decisions

e Compare information criteria of final models
Compare model structures



Sample sizes

Compound Administration Number of patients Number of concentration
method measurements
Citalopram IV 331 1,324
DMAG \Y, 67 1,148
Escitalopram Oral 172 473
CATIE
Olanzapine Oral 523 1,627
Perphenazine Oral 156 421
Risperidone Oral 490 1,236

Ziprasidone Oral 233 568



Model structure and covariate options

Compound NONMEM model structures tested First-order (FO) or first-order Number of
conditional (FOCE) estimation covariates collected

Citalopram, IV ADVANS3, TRANS4 FOCE with interaction 7

DMAG, IV ADVAN3, TRANS4 FOCE with interaction 10

ADVAN11, TRANS4

(with potential for inter-occasion variability)

Escitalopram, oral ADVANZ2, TRANS2 FOCE with interaction 7
ADVAN4, TRANS4

Olanzapine, oral ADVAN2, TRANS2 FOCE with interaction 9
ADVAN4, TRANS4

Perphenazine, oral ADVANZ2, TRANS2 FOCE with interaction 9
ADVAN4, TRANS4

Risperidone, oral ADVAN2, TRANS2 FO 9

ADVAN4, TRANS4
(with 1, 2, or 3 clearance subpopulations)

Ziprasidone, oral ADVAN2, TRANS2 FOCE with interaction 9



Model convergence: SOHGA vs. step-wise

Convergence
Final step-wise model Best
SOHGA
candidate
Citalopram, IV Successful Successful
DMAG, IV Successful Successful
Escitalopram, oral Successful Successful
Olanzapine, oral Required fixing K, early in  Successful
model building process
Perphenazine, oral Required fixing K, early in  Successful
model building process
Risperidone, oral Required fixing K, early in  Successful
model building process
Ziprasidone, oral Required fixing K, early in  Successful

model building process



Model convergence: SOHGA vs. step-wise

Citalopram, IV
DMAG, IV
Escitalopram, oral
Olanzapine, oral
Perphenazine, oral
Risperidone, oral

Ziprasidone, oral

Convergence

Final step-wise model

Successful
Successful
Successful

Required fixing K, early
in model building process
Required fixing K, early
in model building process
Required fixing K, early
in model building process
Required fixing K, early
in model building process

Best SOHGA
candidate

Successful

Successful

Successful

Successful

Successful

Successful

Successful

Covariance step
(condition number)

Final step-wise Best SOHGA
model candidate
Unsuccessful (N/A) Successful
(2,830)

Successful (20) Successful (25)

Successful (39) Successful (9)

Successful (12) Successful (50)

Unsuccessful (N/A)  Successful (212)

Successful

(1.17x10°9)
Successful (5)

Successful (60)

Successful (3)



Fits to data: SOHGA vs. step-wise

e 4 of 7 compounds have >10 point improvement with
genetic algorithm approach

* 10 point penalty for 1 parameter in SOHGA

Compound Final stepwise Best SOHGA AlCsonca — AlCgtepwise
model candidate model

Citalopram, IV AIC =5,391.9 AIC = 5,369.6 -22.3

DMAG, IV AIC =9,871.7 AIC =9,849.4 -22.3

Olanzapine, oral AIC = 10,365.8 AIC =9,895.3 -470.5

Risperidone, oral AIC = 5,131.1 AIC = 4,853.0 -278.1



Fits to data: SOHGA vs. step-wise

e 4 of 7 compounds have >10 point improvement with
genetic algorithm approach

* 3 of 7 have <10 point change

Compound Final stepwise Best SOHGA AlCsonca — AlCgtepwise
model candidate model

Citalopram, IV AIC =5,391.9 AIC = 5,369.6 -22.3

DMAG, IV AIC =9,871.7 AIC =9,849.4 -22.3
Escitalopram, oral AlIC =2,737.7 AlIC =2,737.6 -0.1
Olanzapine, oral AlIC = 10,365.8 AIC =9,895.3 -470.5
Perphenazine, oral AIC = 560.7 AlIC =555.9 -4.8
Risperidone, oral AIC =5,131.1 AIC =4,853.0 -278.1
Ziprasidone, oral AIC =4,463.2 AIC =4,758.7 -4.5



Fits to data: SO

GA vs. step-wise

e 4 of 7 compounds have >10 point improvement with

genetic algorithm approach

* 3 of 7 have <10 point change

e 0 of 7 are worse

Compound Final stepwise
model
Citalopram, IV AIC =5,391.9
DMAG, IV AIC =9,871.7
Escitalopram, oral AlIC =2,737.7
Olanzapine, oral AIC =10,365.8
Perphenazine, oral AIC = 560.7
Risperidone, oral AIC =5,131.1
Ziprasidone, oral AIC =4,463.2

Best SOHGA
candidate model

AIC = 5,369.6
AIC =9,849.4
AIC =2,737.6
AIC =9,895.3
AIC = 555.9
AIC =4,853.0
AIC =4,758.7

AICSOHGA - AICstepwise

-22.3
-22.3
-0.1
-470.5
-4.8
-278.1
-4.5



Model structure: SOHGA vs. step-wise

¢ Compartment structure
e 6 0of 7 (86%) agree

Compound Final step-wise Best SOHGA
model candidate
Citalopram, IV 2 2
DMAG, IV 3 3
Escitalopram, oral 1 1 with estimated Ka
Olanzapine, oral 1 1 with estimated Ka
Perphenazine, oral 1 1 with estimated Ka
Risperidone, oral 1 with 3 component 2 with 2 component
mixture on CL mixture on CL

Ziprasidone, oral 1 1



pyDarwin - Impetus

* Challenges with visual basic coding (sunset of code) for original
SOHGA implementation

* Re-coded the GA in R using a R-shiny gui (Ismail 2022)

* |ssues with
* model search space limitations
» Better at search of space for tumor growth (n=1) and response model, worse
at pop PK model example (n=1)

* github.com/mhismail/nmga

Ismail et al, JPKPD 2002 49(2)243-256



pyDarwin - Impetus

* FDA HHS grant announcement

* Development of a model selection method for population pharmacokinetics
analysis by deep-learning based reinforcement learning (RFA-FD-21-027)

* GA is a “brute force” global optimization algorithm

e Opportunity to explore other ML algorithms for model identification

* https://github.com/certara/pyDarwin



pyDarwin - Model Selection
I N

Search Space Discrete Continuous

Start Trivial Model Initial Estimate

Traditional PK/PD Model Selection (Downhill Method):

» Start from the base model, then add features (COM#, covariate, etc.)

| Appropriate initial Inappropriate initial
estimate for estimate for
- parameter

* Doesn’t consider the complex interaction between the structural, covariate, and

a. Local and global minimain a
continuous simple search space

parameter

Local minimum

Global minimum

Goodness of fit
Q = N (S B -N Ui O ~N O v

random effects

e Assumes the optimal solution is continuously downhill from every other point in
the search space

Machine Learning Model Selection:

« Start from multiple random models, test the models, have better idea about the
model structure, update the information to the next generation and repeat this
procedure

Sale M, Sherer EA.. Br J Clin Pharmacol. 2015 Jan;79(1):28-39

de JR, Beal SL, Sambol NC. J Pharmacokinet Biopharm. 1994;22(2):165-177.
en X, Hamdan A, Wang S, et al. 2022. PAGE 30 (2022) Abstrt 10091 Slide courtesy of Xinnong Li, Ph.D. candidate UB
pyDarwin Handout by Certara

o

Fitness
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Parameter value

b. Discrete search space

Combined
MM
Linear

1 2 3

Number of compartments

Eliminatin



oyDarwin - Algorithms

* Genetic Algorithm?

e Gaussian Process?

* Random Forest?

* Exhaustive Search

* Random Tree with Gradient Boosting?
* Particle Swarm Optimization3

1. Implementation with DEAP, 2. Implementation with scikit-optimize, 3. Implementation with pySwarms

https://certara.github.io/pyDarwin/html/Overview.html Slide courtesy of Xinnong L, Ph.D. candidate UB



pyDarwin-Genetic Algorithm

o &
& o
Workflow: Oy S8 EF
OrkKTiow. g §OFL s S &
g % o (.e%\g, ¢.0° X/
. . LIS Y 3§
* Randomly generate initial candidates F L ELELES &
S &s&ses s ¥
 Select the best parents (using tournament [N q,"{s,f’g" &8 $s
selection) from the candidate pool 03‘ P
o y ) ) ¢ g 2 200 0 o&OES
e Using ‘mutation’ and ‘crossover’ to create Oé‘ 0@“ Oef Oefoe? o«? 0§Oo° o &
next candidate pool Cenome [ W W N N N Y W
. fora
* Repeat the process until no further mode 2% 1"%1,1,0001,1,0,1,0,0,1,0
improvement was observed Select featurs

Gene |, # of compartments, code is 0,1;
Options for number of compartment:
(0,0) = | compartment
(0,0) = 2 compartment, with K12 and K21
(1,0) = 2 compartment, with Q and V;
(1,1) = 2 compartment, with Q and V,

29 Slide courtesy of Xinnong Li, Ph.D. candidate UB Sale M, Sherer EA.. Br J Clin Pharmacol. 2015 Jan;79(1):28-39



pyDarwin Genetic Algorithm (GA

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_parent_selection.htm
Sale M, Sherer EA.. Br J Clin Pharmacol. 2015 Jan;79(1):28-39
Ismail M, Sale M, Yu Y, et al. ] Pharmacokinet Pharmacodyn. 2022 Apr;49(2):243-256.

Fitness Model

Value
Tournament Selection: |1 aQ _
S
| 9 | 2 . Pick the best
L w Select as parent
7 3 K chromosomes
T X atrandom #‘
| s
3| F '
6 | R
I |
2 | v
1 | u
o | |

Crossover: Swap model information with probability P Mutation: change model information with probability P

crossover mutation

Parent Chromosomes

Model Fitness N an Weight on Weight AgeonCL  Age Sex on CL Sex Error

i CL onV onV onV Model
800 94 2 None Linear Exponential None Exponential None Combined
343 98 1 Exponential None None Linear None Linear Proportional

A A

Children Chromosomes
Model Fitness N P Weight on Weight AgeonCL  Age Sex on CL Sex Error
) CL onV onV onV  Model

Exponential None None Linear None Combined

Exponential None ISLIATEIE Linear  Proportional

30
Slide courtesy of Xinnong Li, Ph.D. candidate UB



pyDarwin - Gaussian Process (GP)

a. True function and GP

approximation function b. Acquisition function

Workflow: - Y oo
* For the unknown objective function, N ‘"" W | oo

we first treat it as a random function | W

and place a prior over it. After getting T TS T L .
some observations, the prior will be NI=- -
updated to the posterior distribution. oot pemel 4 A WA |

* Apply the acquisition function to aop— ¥ H| o - | 4

choose the next query point. In this e e e —

study, the acquisition function is x,,, = -/ ¢ o
arg maxu(x), Where u(x) is equal to o [ SRR S NS |
X _ + =0.5 1 Y /l 0.01 -
EI(X) - [E[f(x) _ f(xt )] —1.01 *\'J 0.00

« Sample the next observation y,,; at x.4: e e et I
. . 0.5 - ,”/\\\ >4
* Repeat the process until the final W= W AP
recommendation was made T -

-1.0 v too m l—/

31 —2 -2 -1 0 1 2

- = TFue (unknown)

— lvd_‘x:,

M
® Observations
w— %)

@ Next query point

. ) ] _ 1 0 1 2
Slide courtesy of Xinnong Li, Ph.D. candidate UB https://scikit-optimize.github.io/stable/auto_examples/bayesian-optimization.html



pyDarwin - Random Forest (RF)

a. RF regression steps b. Model Sample
Workflow (regression): i | cowr | Bov [ wra ] .
AN —~—
] Tree 1 @ Tree 2 @) N, Teecool Model 1 1 Yes No
* Bootstrapping — randomly select models to generate o e . (%) o
trees ". " Model 2 2 No power
|
* Aggregating — split the trees by randomly picked [Prodiction1] [Predition2] 7 (Pdctonso0] ) " "
features e
* Run the record down each tree and do the averaging - ey e
get the averaged fitness value \L
Model n 1 Yes exp

* Find the next query point based on the acquisition

function and update the ensemble of decision trees
c. True function and its approximation with uncertainty

» After N queries, the algorithm makes the final Random Forest
recommendation which represents the best estimate ! '
of optimizer

Slide courtesy of Xinnong Li, Ph.D. candidate UB

B. Shahriari, K2Swersky, Z. Wang, et al, in Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175, Jan. 2016.
https://levelup.gitconnected.com/random-forest-regression-209c0f354¢c84




pyDarwin - Local Downhill Search

a. Local downhill search appeared in the searching process

Begin local exhaustive 2-bit search, generation = 05, step =
e Local downhill search is imp|emented Model for local exhaustive search = 05D@6, phenotype = OrderedD
to ensure an efficient selection of the  |EEE NN E R e s P St TR F RS

, 2), ('CL~COHORT', 1), ('V2~COHORT', 1), ('BOVKA', 1), ('RESERI
29 models in local exhaustive search, 1 bits
e Do the local-1-bit search and local-2- 435 models in local exhaustive search, 2 bits

bit search every 5 generations and at
the end

best possible models

* For N bits, local-1-bit search needs to
run N models, local-2-bit search needs b. A chromosome example

to run N*(N-1)/2 models ) ~ C .

* Local-2-bit search is necessary to have 0:1:0:1:1:0:0:0:-1:1.0:1:0.0-1:0
confidence that true best model is
discovered (still no guarantee)

3 . . . .
Sa?e M, Ismail M, Wang F, et al. 2022. PAGE 30 (2022) Abstrt 10053  Slide courtesy of Xinnong Li, Ph.D. candidate UB



pyDarwin - Example

Simulation Model:

e Linear 2 compartment, first order absorption (ADVAN4)
» Typical Value (TV) for Clearance (CL) = 200 L/hr

TV for Central Volume (Vc) = 1000 L

TV for Ka of 2/hr,

TV k23 and k32 of 0.2/hr

TVALAG of 0.2/hr

Log normal between subject variance of 0.2 (all parameters)

* True covariates included:
 CL~ (Weight, bilirubin, race and ALT)
* Vc~Weight
* Ka~age

e Three additional covariates were included that did not influence the model

Sale et al, PAGE 2022



pyDarwin - Example

* Algorithms utilized:
* Gaussian process/Bayesian Optimization (GP)
 Random Forest (RF)
* Gradient Boosted Random Tree (GBRT)
e Genetic algorithm (GA)
* Exhaustive search



pyDarwin - Example

The search space for the model selection consisted of 10 dimensions:
Number of compartment (1,2,3)
Volume as a function of Weight (yes|no)
Volume as a function of Sex (yes|no)
Clearance as a function Weight (yes|no)
Clearance as a function Age (yes|no)
Between subject variability (BSV) on Ka (yes|no)
K23/K32 (if present) as a function of Weight (yes|no)

,(Absolrpt)ion model (first order|zero order|combined zero, then first order) vs Absorption lag time
yes|no

BSV on zero order absorption or lag time, if present (yes|no)
Residual error model (additive | proportional + additive)
~13000 candidate models

Sale et al, PAGE 2022



pyDarwin - Example

 The search criteria included:
* Objective function value (OFV)

 Parsimony penalty (10 points for each estimated parameter, THETA, OMEGA
and SIGMA)

100 point penalties for:
* failing to converge
* failing the covariance step
* failing the correlation test
e condition number > 1000

Sale et al, PAGE 2022



pyDarwin - Example

e Determination of “true optimal” model

* True optimal model (from exhaustive search):
e two compartment
* zero-order absorption
* combined proportional + additive residual error
* Nno covariates
* Fitness: 4818

e Simulation model had:

* higher (worse) reward than the “true” optimal model
 failed the covariance step
* incurred a 300 point penalty (fitness 5118)
e 100 each for:
¢ Covariance

e correlation
e condition number

Sale et al, PAGE 2022



pyDarwin - Example

* All ML methods failed to identify the “true” optimal model

 All identified a 2-compartment model, without the zero-order
infusion

* The 1-bit local search still did not result in the true optimal model
(4922 fitness)

* A 2-bit search was implemented, where all combinations of 2-bit
changes were examined

* This resulted in 120 new models (Table 1) (16 bits, [N%-N)/2])
e Best fitness with 2-bit downhill search for all ML methods 4818

Sale et al, PAGE 2022



pyDarwin - Example

1 crash

O 00 N O L & WN

B R R R R R R
O U Ddh WN PP O

2 3 4 5 6 7 8 9 10 11 12 13 14 15
crash crash crash
5165.69 4827.70 crash
4922.70 4928.74 crash
4932.68 crash

crash crash crash crash crash
5148.49 5167.12 4928.49 24018.29 4818.16
5158.77 5128.77 5128.77 6716.45 4918.22
5178.74 5138.74 5138.74 5144.30 4927.68

crash crash crash crash crash
5032.32  5417.99 crash 4924.46  4923.49
4922.60 4922.60 4924.50 4924.66 4924.39
4932.58 4932.58 crash 4934.63 crash

crash
crash

4918.77 crash crash crash crash crash crash crash crash crash crash
99999.00 5032.60 4925.97 4926.18 4928.11 5152.60 5132.60 5132.60 crash 4922.13
5032.64 4925.97 4926.18 4928.11 5152.60 5132.60 5132.60 crash 4922.13
4926.09 crash 4930.31 5154.50 crash 5134.50 crash 4923.91
4926.30 4930.41 crash 5134.66 5134.66 5310.48 4924.08
4928.20 5154.40 5134.39 5134.40 554857 4923.87
5152.70 5138.77 crash 5441.17 5156.14
5132.70 crash 32929.81 5128.22
5132.70 5137.88 4926.14

5315.49 crash
4922.22

Sale et al, PAGE 2022
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crash
5776.74
5666.87
5647.75

crash
5670.00
5670.00
5669.31
5669.31
5674.41
6006.24
5976.87
5776.24
6233.71
5662.69
5670.06



pyDarwin - practicalities

$INPUT ID TIME ADDL OCC II DV EVID MDV AMT ORAL RACE COHORT SEX LASTNEG FIRSTPOS
$DATA {data_dir}/finalmé_3.CSV IGNORE=#
$SUBROUTINE {ADVAN[1]}

e ML algorithm

* Penalty terms

e Population size

e Number of generations
* etc...

SPK
CWTKG = WEIGHT/76.6
CBMI = BMI/25.4
CWTKGZERO = WEIGHT - 76.6
BMIZERO = BMI-25.4

Option file

{BOVKA[1]}

IF (OCC.EQ.1l) THEN

KA=24*THETA (5) *EXP (ETA(S))

F1=THETA (4) *EXP (ETA (4))

ENDIF

¢ Features to test
e Different options in one feature

IF (OCC.GE.2) THEN

KA=24*EXP (ETA(3) ) *THETA (3) {KA~BMI[1]} {KA~COHORT[1]} {KA~WT[1l]} *EXP(BOVKA)

Fl=1

ENDIF

TVCL=24*THETA (1) {CL~WT[1] } {CL~BMI[1]}{CL~COHORT[1]}

CL=TVCL*EXP (ETA (1))

TVV2=THETA(2) {V2~WT[1]}{V2~BMI[1]}{V2~COHORT[1]}
V2=TVV2*EXP (ETA(2))

K=CL/V2

¢ Similar to the control stream in NONMEM
{ADVAN[2]}

s2=v2 Template file

42
https://certara.github.io/pyDarwin/html/Overview.html Slide courtesy of Xinnong Li, Ph.D. candidate UB



. . .. "author": "Certara",
pyDarwin - practicalities olgoritt "B,
exhaustive_batch_size'": 100,
"population_size": 8,
"num_parallel": 4,

* Options file "crash_value": 99999999,
"penalty": {
* specifies “theta": 10,
e Author “omega": 10,
. 1 . II: 10'
* Algorithm S .
e p | tion size convergence': 100,
OpU d ""covariance": 100,
e Parallelprocesses “correlation”: 100,
* # per generation "condition_number": 100,
e H Of generations "non_influential tokens": 0.00001
* Penalties b
 nmfe??.bat path . ..
. remove_run_dir": false,
* Timeout
* POSt. prOCESSing (thhOﬂ R code for “nmfe_path": "c:/nm744/util/nmfe74.bat",
additional penalties etc. “model run_timeout": 1200



pyDarwin - practicalities

* Template file

 Specifies
e Control stream
e Model structure

* Location of swappable
tokens

$PROBLEM 2 compartment fitting
$INPUT ID TIME AMT DV WTKG GENDER AGE DROP
$DATA {data_dir}/dataExamplel.csv IGNORE=@

$SUBROUTINE ADVAN2

$ABBR DERIV2=NO

$PK
CWTKG = WTKG/7@0 ;; CENTERED ON ONE
CAGE = AGE/40

;3 thetas out of sequence
TVV2=THETA(2){V2~WT[1]} {V2~GENDER[1]}
V2=TVV2xEXP(ETA(2))
TVCL= THETA(1) {CL~WTI[1]}
CL=TVCL*EXP(ETA(1))
K=CL/V2
TVKA=THETA(3)
KA=TVKA {KAETA[1]}

S2 = V2/1000
{ALAG[1]}

$ERROR

REP = IREP

IPRED =F

I0BS = F {RESERR[1]}

Y=I0BS

$THETA ;; must be one THETA per line.
(0.001,100) ; THETA(1) CL UNITS = L/HR
(0.001,500) ; THETA(2) V UNITS =L
(0.001,2) ; THETA(3) KA UNITS = 1/HR

{V2~WT[2]} ;;; comment must consist of more than one word

{V2~GENDER[2]} ;;; otherwise it's a definition, and it will push you back

{CL~WT 2]}
{ALAG[2]}



pyDarwin - practicalities

* Tokens file

 Specifies
* elements to be
substituted into tokens
for each of the options
selected

* Each token is named
and sequenced using
the json format

"V2WT" :

1,

"V2~GENDER" :
[IIII'

1,

"CL~WT"

1,

"KAETA":

[

[

[""*CWTKG+*THETA(V2~WT) ",
' (-4,0.8,4) \t; THETA(V2~WT) POWER volume ~WT "

1,

[IIII’

]

[

1, ["EXP (GENDER*THETA (V2~GENDER) )",
' (-4,0.1,4) \t; THETA(V2~GENDER) exponential volume~GENDER "

]

[

["«CWTKG*kTHETA(CL~WT)",
' (-4,.7,4) \t; THETA(CL~WT) POWER clearance~WT "

1,

[IIII'

]

["*EXP(ETA(KAETA)) ",

1,

[||||’

]

"$OMEGA ;;

2nd??0MEGA block \n @.1\t\t; ETA(KAETA) ETA ON KA"



$PROBLEM 2 compartment fitting {

$INPUT ID TIME AMT DV WTKG GENDER AGE DROP N
$DATA {data_dir}/dataExamplel.csv IGNORE=@ [ 5CWTKGHKTHETA(V2~WT) ",
" (-4,0.8,4) \t; THETA(V2~WT) POWER volume ~WT "

$SUBROUTINE ADVAN2 1,
$ABBR DERIV2=N0O [,
$PK o

CWTKG = WTKG/70 ;; CENTERED ON ONE 1

CAGE = AGE/40
;3 thetas out of sequence 1y

TVV2=THETA(2){V2~WT[1]} [{V2~GENDER[1] } - .
V2=TVV2+EXP (ETA(2)) | VZNGENDET"' t

TVCL= THETA(1) {CL~WTI[1]}
CL=TVCL*EXP(ETA(1))

[""«EXP (GENDER*THETA(V2~GENDER) )",

K=CL/V2 " (-4,0.1,4) \t; THETA(V2~GENDER) exponential volume~GENDER "
TVKA=THETA(3) I
KA=TVKA {KAETA[1]}
S2 = V2/1000 1,
{ALAG[1]} MCLMNT:
$ERROR ["'xCWTKG*KkTHETA (CL~WT) ",
REP = IREP " (-4,.7,4) \t; THETA(CL~WT) POWER clearance~WT "
IPRED =F 1;"
I0BS = F {RESERR[1]} R
Y=I0BS ]
$THETA ;; must be one THETA per line. 1,
(0.001,100) ; THETA(1) CL UNITS = L/HR "KAETA": [
(0.001,500) ; THETA(2) V UNITS =L ["xEXP(ETA(KAETA)) *,
(0.001,2) ; THETA(3) KA UNITS = 1/HR "$OMEGA ;; 2nd??0MEGA block \n ©.1\t\t; ETA(KAETA) ETA ON KA"
1,
{V2~WT[2]} ;;; comment must cons of more than one word [,
|{V2~GENDER[2]} 35 otherwise it's a definition, and it will push you back ]""
{CL~WT[2]}

{ALAG[2]1} ]



Select structural models and which covariates to include

9 Darwin Search properties

General

E-ADVAN2
—WT
—AGE
—CLCR
—SEX
E-ADVAN4
—WT
—AGE
—CLCR
—SEX
Template extras
Sigmas
Downhill step
Penalties
Postprocessing
Directories

GA setup
Model cache
Custom options

. O X

Model template setup

Parametrization " Micro & Clearance

[ Hide unused parameters

[~ Simplified ADVAN table view
Enable ADVANs

ADVAN1 ADVAN2 ADVAN3 ADVAN4 AW ANIOD ADVAN11  ADVAN12
I Vv I Vv V I r
Enable covariates
WT - v In v r - r
AGE - v r v r r r
CLCR r v In v r r -
SEX r v r v r I I
RACE r r r r r I I~
Help Save Cancel

© Copyright 2022 Certara, L.P. All rights reserved.

CERTARA?



Penalty/Fitness/Cost function

@0 Darwin Search properties - [m} X
General Penalties
Data - -
¥ Use default pyDarwin penalties
E Model template
B-ADVAN2  Penalty added to fitness for
—WT each estimated THETA ?
—AGE h estimated OMEGA ?
| cLer each estimate g
—SEX each estimated SIGMA ?
BE-ADVAN4
wT failing to converge ?
[TAGE failing the covariance step ?
—CLCR
—SEX any off-diagonal element of the correlation matrix being off ?
Template extras . X
- the condition number being > 1000 ?
Sigmas
Downhill step any tokens not influencing the control file ?
Postprocessing Value of fitness assigned when model output is not generated 99999999 ?
Directories
GA setup

Model cache
Custom options

Help Save Cancel

© Copyright 2022 Certara, L.P. All rights reserved. CERTARA’)



Multi-objective GA optimization

* Optimize over many criteria

Cost

* Decisionmakers
* preferred not to be presented with a single “best” option



Multi-objective genetic algorithm

* Front in -2xLL vs. # parameters space

Risperidone, Front 1 by generation
35
e
30 | - 2 compartments
:’ & Generation 1
g 25 '.l'. ® Generation 5
"g 20 o oo’ ¢ & Generation 15
1S - [ N ] [ | .
S %) 0= 1; 1 Compartment ® Generation 16
5 45 : :
2
£
3 10 - * 0:0
. -
° Best step-wise solution
0 OBJ =5,103.1 (14 parameters)
4500 5000 5500 6000 6500
-2LL

Sherer et al PAGE 2012



Multi-objective genetic algorithm

* Front in -2xLL vs. # parameters space

Risperidone, Front 1 by generation
35 -
=
30 | - 2 compartments
:’ & Generation 1
g 25 1 '.'.. ® Generation 5
"g 20 woe® ® @ Generation 15
£ ] -s . .
S - PN s 2 1 Compartment ® Generation 16
5 e = =
« 15 4 = 2 e :-
£ - S
5 10 . bt 8 ¢
= ] ] N
) [ ] -
5 | Best SOHGA solution “
OBJ =4,815.2 (16 parameters)
O T T T 1
4500 5000 5500 6000 6500
-2LL

Sherer et al PAGE 2012



Multi-objective genetic algorithm

Ziprasidone

Perphenazine

Objective Function Value

Evolution of OFV vs. # Params Pareto front

4790

4780

4770

4760

4750

B
~
B
o

4730

4720

¢ GEN 10 |
m GEN 20
" 4 GEN 30 -
°
* - < GEN 40 |
Stepwiseo K GEN 50
SOHGA g ¢
]
F1 ; ! +
g
‘;‘. ! ¥ _
X X
5 10 15

Number of model parameters

20

Objective Function Value

Evolution of OFV vs. # Params Pareto front

580
570 # Generation #10
W Generation #20
o
X A Generation #30
560 —
- . # Generation #40
A
550 ¥ Generation #50 |
” ® Generation #60
A8 mpg
540
Stepwise 4 A e
o
@ A
530 SOHGA © ‘ ! A
® X
o
520 T T T 1
5 10 15

Number of model parameters

20

Sherer et al PAGE 2012




Multi-objective genetic algorithm — IV
Citalopram

Evolution of OFV vs. # Params Pareto front
6400
° ¢ GEN10

@ 6200 o —
= W GEN20
S - .
= 6000 GEN 30 -
2 - < GEN 40
=
S s800 | e ¥ GEN 50 —
(T ~ARPpn
@ S
2 5600 epwise
[®)
)]
- —
.8 Ko~

5400 f

Xme —n
,MQQNN'* Xy R X
SOHGA
5200 : : : : : :
0 5 10 15 20 25 30
Number of model parameters

Sherer et al PAGE 2012



Conclusions

* ML methods typically selected the better models vs stepwise
selection (human driven)

* One bit downhill search is not always sufficient to discover the
numerically optimal model

* Multi-objective optimization (GA) provides insight into non-
dominated solutions for specific metrics
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