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Local search:
“step-wise” regression
• Base (covariate free) model
• Keep known physiology in mind
• Compare compartment structures

• Residual error structure to minimize systematic errors
• Inter-individual variability where identifiable

• Lag-time or mixture models if relevant

• Final model
• Baseline structure
• Single covariate forward addition
• Single covariate backward elimination
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Potentially large solution space for a 
Pop PK model example

N Initial conditions for NONMEM

2
Compartment structure

1 or 2 compartments
2 lag-time (yes/no)

4x2
Weight and age covariate on clearance

None, additive, proportional, power function

4x2
Weight and age covariate on volume

None, additive, proportional, power function
2x2 Sex covariate on clearance and volume of distribution

3x2
Between subject variability on CL, V and Ka

absent or exponential

3
Residual error structure

additive, proportional, combined
98304



Potentially large solution space for a 
Pop PD model example

Ismail et al, JPKPD 2002 49(2)243-256



Genetic algorithms

• What are they?

• A means of evaluating factors in a model where more than one factor can be 
changed at a single step

• Partially automated to allow a more “complete” evaluation of the full grid 
search space for a particular candidate model

Holland, J.H. (1984). Genetic Algorithms and Adaptation. In: Selfridge, O.G., Rissland, E.L., Arbib, M.A. (eds) Adaptive Control of Ill-Defined Systems. NATO 
Conference Series, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8941-5_21
Holland, J. H. [1975]. “Adaptation in Natural and Artificial Systems,” University of Michigan Press, Ann Arbor.

https://doi.org/10.1007/978-1-4684-8941-5_21


Genetic algorithms

• Approach:
• Replicate “survival of the fittest”

• Evolutionary process is imposed on the selection and “survival” of the “best” 
model descriptions

• Calculate an indicator of how “healthy” a particular individual model in the 
population is

• Utilized in multiple fields e.g. placing cell phone towers, predicting stock 
performance etc.

Holland, J.H. (1984). Genetic Algorithms and Adaptation. In: Selfridge, O.G., Rissland, E.L., Arbib, M.A. (eds) Adaptive Control of Ill-Defined Systems. NATO 
Conference Series, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8941-5_21
Holland, J. H. [1975]. “Adaptation in Natural and Artificial Systems,” University of Michigan Press, Ann Arbor.

https://doi.org/10.1007/978-1-4684-8941-5_21


Genetic algorithms

• “good” characteristics become more likely
• Efficient at finding “good” regions of solution space
• Slow to converge local “best”
• Adaptations
• Elitism

• Retain best candidate to next generation
• Local search hybrid

• Compare candidate with each model differing by 1 bit
• Every ‘n’ generations



Genetic algorithms

• Implementation in the context of population PK/PD/Disease Progress modeling (Bies and Sale 
2006, JPP August, Sherer, Sale and Bies 2012 JPP)

• Potential models are reduced to a bit-string (base-2 number assembly) that reflects the model 
“genetic” code

• Each model feature (e.g., number of compartment, covariate relationship) is coded as a base 2 
number
• If there are 2 options the values are 0 or 1 [(0) (1)], if more than two options then one has multiple bits 

eg. [(0 0), (0 1), (1 0), (1 1)]

• Features are strung together to produce aforementioned bit string

• Model can be reproduced based on the bit string that results



Adapted from
Br J Clin Pharmacol 2013 Jun 17 Epub ahead of print

(0,0)=1 compartment, first order absorption
(0,1,)=1 compartment, first order absorption, lag
(1,0)= 2 compartment, first order absorption
(1,1,)=2 compartment first order absorption, lag



Adapted from: Br J Clin Pharmacol 2013 Jun 17 Epub ahead of print

Model Feature Feature Options Bit 
string
code

NONMEM code

1-cmt, 1st order 
absorption

0,0 Advan2 Trans2

1-cmt, 1st order 
absorption, lag

0,1 Advan2 Trans2, alag

Number of 
Compartments

2-cmt, 1st order 
absorption

1,0 Advan4, Trans4

2-cmt, 1st order 
absorption, lag

1,1 Advan4, Trans4, alag

No Effect 0,0 “”

Effect of Weight Linear Effect 0,1 “+THETA()*WT”

on Clearance Power Model Effect 1,0 “*WT**THETA()”

Exponential effect 1,1 “*EXP(THETA()*WT)”



Genetic algorithms

• Single-objective – user defined criteria, with defaults
• Default composite fitness measure

• -2 x log-likelihood
• Penalty per model variable (10 points)
• Penalties for failure to converge (400), covariance (400), and 

correlation (300)

• Multi-objective
• Pareto front for pairs of objectives
• Eg.  -2xLL vs. # parameters
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Single-objective, hybrid genetic 
algorithm (SOHGA)

vs.
step-wise approach

• Pharmacokinetic data for 7 compounds
• Identical model options / decisions

• Compare information criteria of final models
• Compare model structures



Sample sizes

Compound Administration 
method

Number of patients Number of concentration  
measurements

Citalopram IV 331 1,324
DMAG IV 67 1,148
Escitalopram Oral 172 473
CATIE

Olanzapine Oral 523 1,527
Perphenazine Oral 156 421
Risperidone Oral 490 1,236
Ziprasidone Oral 233 568



Model structure and covariate options

Compound NONMEM model structures tested First-order (FO) or first-order 
conditional (FOCE) estimation

Number of 
covariates collected

Citalopram, IV ADVAN3, TRANS4 FOCE with interaction 7

DMAG, IV ADVAN3, TRANS4
ADVAN11, TRANS4
(with potential for inter-occasion variability)

FOCE with interaction 10

Escitalopram, oral ADVAN2, TRANS2
ADVAN4, TRANS4

FOCE with interaction 7

Olanzapine, oral ADVAN2, TRANS2
ADVAN4, TRANS4

FOCE with interaction 9

Perphenazine, oral ADVAN2, TRANS2
ADVAN4, TRANS4

FOCE with interaction 9

Risperidone, oral ADVAN2, TRANS2 
ADVAN4, TRANS4 
(with 1, 2, or 3 clearance subpopulations)

FO 9

Ziprasidone, oral ADVAN2, TRANS2 FOCE with interaction 9



Model convergence:  SOHGA vs. step-wise

Convergence
Final step-wise model Best 

SOHGA 
candidate

Citalopram, IV Successful Successful
DMAG, IV Successful Successful
Escitalopram, oral Successful Successful
Olanzapine, oral Required fixing Ka early in 

model building process
Successful

Perphenazine, oral Required fixing Ka early in 
model building process

Successful

Risperidone, oral Required fixing Ka early in 
model building process

Successful

Ziprasidone, oral Required fixing Ka early in 
model building process

Successful



Model convergence:  SOHGA vs. step-wise

Convergence Covariance step
(condition number)

Final step-wise model Best SOHGA 
candidate

Final step-wise 
model

Best SOHGA 
candidate

Citalopram, IV Successful Successful Unsuccessful (N/A) Successful 
(2,830)

DMAG, IV Successful Successful Successful (20) Successful (25)

Escitalopram, oral Successful Successful Successful (39) Successful (9)

Olanzapine, oral Required fixing Ka early 
in model building process

Successful Successful (12) Successful (50)

Perphenazine, oral Required fixing Ka early 
in model building process

Successful Unsuccessful (N/A) Successful (212)

Risperidone, oral Required fixing Ka early 
in model building process

Successful Successful (60) Successful 
(1.17x106)

Ziprasidone, oral Required fixing Ka early 
in model building process

Successful Successful (3) Successful (5)



Fits to data:  SOHGA vs. step-wise

• 4 of 7 compounds have >10 point improvement with 
genetic algorithm approach
• 10 point penalty for 1 parameter in SOHGA

Compound Final stepwise 
model

Best SOHGA 
candidate model

AICSOHGA – AICstepwise

Citalopram, IV AIC = 5,391.9 AIC = 5,369.6 -22.3
DMAG, IV AIC = 9,871.7 AIC = 9,849.4 -22.3 

Olanzapine, oral AIC = 10,365.8 AIC = 9,895.3 -470.5

Risperidone, oral AIC = 5,131.1 AIC = 4,853.0 -278.1



Fits to data:  SOHGA vs. step-wise

• 4 of 7 compounds have >10 point improvement with 
genetic algorithm approach
• 3 of 7 have <10 point change 

Compound Final stepwise 
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Best SOHGA 
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Ziprasidone, oral AIC = 4,463.2 AIC = 4,758.7 -4.5



Fits to data:  SOHGA vs. step-wise
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Model structure: SOHGA vs. step-wise

• Compartment structure
• 6 of 7 (86%) agree

Compound Final step-wise
model

Best SOHGA
candidate

Citalopram, IV 2 2

DMAG, IV 3 3

Escitalopram, oral 1 1 with estimated Ka

Olanzapine, oral 1 1 with estimated Ka

Perphenazine, oral 1 1 with estimated Ka

Risperidone, oral 1 with 3 component 
mixture on CL

2 with 2 component 
mixture on CL

Ziprasidone, oral 1 1



pyDarwin - Impetus

• Challenges with visual basic coding (sunset of code) for original 
SOHGA implementation

• Re-coded the GA in R using a R-shiny gui (Ismail 2022)
• Issues with 

• model search space limitations
• Better at search of space for tumor growth (n=1) and response model, worse 

at pop PK model example (n=1)

• github.com/mhismail/nmga

Ismail et al, JPKPD 2002 49(2)243-256



pyDarwin - Impetus

• FDA HHS grant announcement
• Development of a model selection method for population pharmacokinetics 

analysis by deep-learning based reinforcement learning (RFA-FD-21-027) 

• GA is a “brute force” global optimization algorithm

• Opportunity to explore other ML algorithms for model identification

• https://github.com/certara/pyDarwin



pyDarwin - Model Selection

Traditional PK/PD Model Selection (Downhill Method):

• Start from the base model, then add features (COM#, covariate, etc.)

• Doesn’t consider the complex interaction between the structural, covariate, and
random effects

• Assumes the optimal solution is continuously downhill from every other point in
the search space

Machine Learning Model Selection:

• Start from multiple random models, test the models, have better idea about the
model structure, update the information to the next generation and repeat this
procedure

27

Model Selection Parameter Estimation

Search Space Discrete Continuous

Start Trivial Model Initial Estimate

Sale M, Sherer EA.. Br J Clin Pharmacol. 2015 Jan;79(1):28-39
Wade JR, Beal SL, Sambol NC. J Pharmacokinet Biopharm. 1994;22(2):165-177. 
Chen X, Hamdan A, Wang S, et al. 2022. PAGE 30 (2022) Abstrt 10091
pyDarwin Handout by Certara

a. Local and global minima in a 
continuous simple search space

b. Discrete search space

Slide courtesy of Xinnong Li, Ph.D. candidate UB



pyDarwin - Algorithms

• Genetic Algorithm1

• Gaussian Process2

• Random Forest2

• Exhaustive Search
• Random Tree with Gradient Boosting2

• Particle Swarm Optimization3

28
https://certara.github.io/pyDarwin/html/Overview.html Slide courtesy of Xinnong Li, Ph.D. candidate UB

1. Implementation with DEAP, 2. Implementation with scikit-optimize, 3. Implementation with pySwarms



pyDarwin-Genetic Algorithm

Workflow: 
• Randomly generate initial candidates 

• Select the best parents (using tournament 
selection) from the candidate pool

• Using ‘mutation’ and ‘crossover’ to create 
next candidate pool

• Repeat the process until no further 
improvement was observed

29 Sale M, Sherer EA.. Br J Clin Pharmacol. 2015 Jan;79(1):28-39Slide courtesy of Xinnong Li, Ph.D. candidate UB



pyDarwin Genetic Algorithm (GA)

30

Crossover: Swap model information with probability Pcrossover Mutation: change model information with probability Pmutation

0

Tournament Selection:

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_parent_selection.htm
Sale M, Sherer EA.. Br J Clin Pharmacol. 2015 Jan;79(1):28-39
Ismail M, Sale M, Yu Y, et al. J Pharmacokinet Pharmacodyn. 2022 Apr;49(2):243-256. 

Slide courtesy of Xinnong Li, Ph.D. candidate UB

Model



pyDarwin - Gaussian Process (GP)

Workflow:
• For the unknown objective function, 

we first treat it as a random function 
and place a prior over it. After getting 
some observations, the prior will be 
updated to the posterior distribution.
• Apply the acquisition function to 

choose the next query point. In this 
study, the acquisition function is 𝑥!"# =
𝑎𝑟𝑔max

$
𝑢 𝑥 , where 𝑢 𝑥 is equal to 

𝐸𝐼 𝑥 = 𝔼 𝑓 𝑥 − 𝑓 𝑥!"

• Sample the next observation 𝑦!"# at 𝑥!"#

• Repeat the process until the final 
recommendation was made
31

https://scikit-optimize.github.io/stable/auto_examples/bayesian-optimization.html

a. True function and GP 
approximation function b. Acquisition function

Slide courtesy of Xinnong Li, Ph.D. candidate UB



pyDarwin - Random Forest (RF)

Workflow (regression):
• Bootstrapping – randomly select models to generate 

trees

• Aggregating – split the trees by randomly picked 
features

• Run the record down each tree and do the averaging -
get the averaged fitness value

• Find the next query point based on the acquisition 
function and update the ensemble of decision trees

• After N queries, the algorithm makes the final 
recommendation which represents the best estimate 
of optimizer

32

COM# BOV WT~CL …

Model 1 1 Yes No …

Model 2 2 No power …

Model 3 1 No No …

⋮ ⋮ ⋮ ⋮ …

Model n 1 Yes exp …

https://levelup.gitconnected.com/random-forest-regression-209c0f354c84
B. Shahriari, K. Swersky, Z. Wang, et al, in Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175, Jan. 2016.

a. RF regression steps b. Model Sample  

c. True function and its approximation with uncertainty  

Slide courtesy of Xinnong Li, Ph.D. candidate UB



pyDarwin - Local Downhill Search

• Local downhill search is implemented
to ensure an efficient selection of the
best possible models

• Do the local-1-bit search and local-2-
bit search every 5 generations and at
the end

• For N bits, local-1-bit search needs to
run N models, local-2-bit search needs
to run N*(N-1)/2 models

• Local-2-bit search is necessary to have
confidence that true best model is
discovered (still no guarantee)

33Sale M, Ismail M, Wang F, et al. 2022. PAGE 30 (2022) Abstrt 10053

a. Local downhill search appeared in the searching process

b. A chromosome example

Slide courtesy of Xinnong Li, Ph.D. candidate UB



pyDarwin - Example

• Simulation Model:
• Linear 2 compartment, first order absorption (ADVAN4)

• Typical Value (TV) for Clearance (CL) = 200 L/hr
• TV for Central Volume (Vc) = 1000 L
• TV for Ka of 2/hr, 
• TV k23 and k32 of 0.2/hr
• TVALAG of 0.2/hr
• Log normal between subject variance of 0.2 (all parameters)

• True covariates included: 
• CL~ (Weight, bilirubin, race and ALT)
• Vc ~Weight 
• Ka~age

• Three additional covariates were included that did not influence the model

Sale et al, PAGE 2022



pyDarwin - Example

• Algorithms utilized:
• Gaussian process/Bayesian Optimization (GP)
• Random Forest (RF)
• Gradient Boosted Random Tree (GBRT)
• Genetic algorithm (GA)
• Exhaustive search



pyDarwin - Example

• The search space for the model selection consisted of 10 dimensions:
• Number of compartment (1,2,3)
• Volume as a function of Weight (yes|no)
• Volume as a function of Sex (yes|no)
• Clearance as a function Weight (yes|no)  
• Clearance as a function Age (yes|no)
• Between subject variability (BSV) on Ka (yes|no)
• K23/K32 (if present) as a function of Weight (yes|no)
• Absorption model (first order|zero order|combined zero, then first order) vs Absorption lag time 

(yes|no)
• BSV on zero order absorption or lag time, if present (yes|no)
• Residual error model (additive|proportional + additive)
• ~13000 candidate models

Sale et al, PAGE 2022



pyDarwin - Example

• The search criteria included:
• Objective function value (OFV)
• Parsimony penalty (10 points for each estimated parameter, THETA, OMEGA 

and SIGMA)
• 100 point penalties for:

• failing to converge
• failing the covariance step
• failing the correlation test
• condition number > 1000

Sale et al, PAGE 2022



pyDarwin - Example
• Determination of “true optimal” model

• True optimal model (from exhaustive search): 
• two compartment
• zero-order absorption 
• combined proportional + additive residual error 
• no covariates
• Fitness: 4818

• Simulation model had: 
• higher (worse) reward than the “true” optimal model 
• failed the covariance step
• incurred a 300 point penalty (fitness 5118)

• 100 each for: 
• covariance
• correlation
• condition number

Sale et al, PAGE 2022



pyDarwin - Example

• All ML methods failed to identify the “true” optimal model
• All identified a 2-compartment model, without the zero-order 

infusion
• The 1-bit local search still did not result in the true optimal model 

(4922 fitness)
• A 2-bit search was implemented, where all combinations of 2-bit 

changes were examined 
• This resulted in 120 new models (Table 1) (16 bits, [N2-N)/2]) 
• Best fitness with 2-bit downhill search for all ML methods 4818

Sale et al, PAGE 2022



pyDarwin - Example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 crash crash crash crash crash crash crash crash crash crash crash crash crash crash crash crash
2 crash 5165.69 4827.70 crash 5032.32 5417.99 crash 4924.46 4923.49 5148.49 5167.12 4928.49 24018.29 4818.16 5776.74
3 4922.70 4928.74 crash 4922.60 4922.60 4924.50 4924.66 4924.39 5158.77 5128.77 5128.77 6716.45 4918.22 5666.87
4 4932.68 crash 4932.58 4932.58 crash 4934.63 crash 5178.74 5138.74 5138.74 5144.30 4927.68 5647.75
5 4918.77 crash crash crash crash crash crash crash crash crash crash crash
6 99999.00 5032.60 4925.97 4926.18 4928.11 5152.60 5132.60 5132.60 crash 4922.13 5670.00
7 5032.64 4925.97 4926.18 4928.11 5152.60 5132.60 5132.60 crash 4922.13 5670.00
8 4926.09 crash 4930.31 5154.50 crash 5134.50 crash 4923.91 5669.31
9 4926.30 4930.41 crash 5134.66 5134.66 5310.48 4924.08 5669.31
10 4928.20 5154.40 5134.39 5134.40 5548.57 4923.87 5674.41
11 5152.70 5138.77 crash 5441.17 5156.14 6006.24
12 5132.70 crash 32929.81 5128.22 5976.87
13 5132.70 5137.88 4926.14 5776.24
14 5315.49 crash 6233.71
15 4922.22 5662.69
16 5670.06

Sale et al, PAGE 2022



pyDarwin - practicalities

42
https://certara.github.io/pyDarwin/html/Overview.html

Option file

• ML algorithm 
• Penalty terms
• Population size
• Number of generations
• etc...

Token file

• Features to test
• Different options in one feature

Template file
• Similar to the control stream in NONMEM

Slide courtesy of Xinnong Li, Ph.D. candidate UB



pyDarwin - practicalities

• Options file

• specifies 
• Author
• Algorithm
• Population size
• Parallelprocesses
• # per generation
• # of generations
• Penalties
• nmfe??.bat path
• Timeout
• Post processing (python/R code for 

additional penalties etc.)



pyDarwin - practicalities
• Template file
• Specifies 
• Control stream
• Model structure
• Location of swappable 

tokens



pyDarwin - practicalities

• Tokens file
• Specifies 
• elements to be 

substituted into tokens 
for each of the options 
selected 
• Each token is named 

and sequenced using 
the json format





© Copyright 2022 Certara, L.P.  All rights reserved.

Select structural models and which covariates to include



© Copyright 2022 Certara, L.P.  All rights reserved.

Penalty/Fitness/Cost function



Multi-objective GA optimization
• Optimize over many criteria

• Decisionmakers
• preferred not to be presented with a  single “best” option 
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Multi-objective genetic algorithm

• Front in -2xLL vs. # parameters space
Risperadone, Front 1 by generation
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Sherer et al PAGE 2012



Multi-objective genetic algorithm

• Front in -2xLL vs. # parameters space
Risperadone, Front 1 by generation
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Multi-objective genetic algorithm

Ziprasidone Perphenazine

Sherer et al PAGE 2012



Multi-objective genetic algorithm – IV 
Citalopram

Sherer et al PAGE 2012



Conclusions

• ML methods typically selected the better models vs stepwise 
selection (human driven)

• One bit downhill search is not always sufficient to discover the 
numerically optimal model

• Multi-objective optimization (GA) provides insight into non-
dominated solutions for specific metrics
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