

A QSP model to understand clinical cytokine dynamics following bispecific dosing in solid tumors

Jared Weddell Astellas Pharma 6-14-2023

Bispecific antibodies are a promising class of therapeutics

R/R multiple myeloma (fifth line) – % ORR from BCMA targeting therapies Blenrep (ADC) – 31% Abecma (CAR T) – 73% Carvykti (CAR T) – 98% Tecvayli (Bispecific) – 68%

Cytokine release occurs as a part of bispecific therapy mechanism of action

Cytokine release syndrome (CRS) is a dose limiting toxicity for bispecific therapies

Dose selection is complex but critical for bispecific therapy clinical trials

Approved CD3-based bispecifics have complex dosing regimens and high CRS incidence

Drug	Indication	Dose Regimen	CRS Incidence
Blinatumomab	R/R acute lymphocytic leukemia	Cycle Day 1-28: 28 µg/day infusion Cycle Day 29-42: Treatment-free	14%
Mosunetuzumab	R/R follicular Lymphoma	Day 1: 1 mg Day 2: 2 mg Day 15: 60 mg Day 21: 60 mg Day 42: 30 mg QW	44%
Tebentafusp-tebn	Metastatic uveal melanoma	D1: 20 μg D8: 30 μg D15: 68 μg QW	89%
Teclistamab	R/R multiple myeloma	D1: 0.06 mg/kg SC D3 - 5: 0.3 mg/kg SC D5 - 9: 1.5 mg/kg QW SC	72%

How do we select a bispecific FIH dose regimen?

Goal: Can we predict clinical cytokine dynamics to support dose selection?

Quantitative systems pharmacology (QSP) modeling to support safety prediction

QSP: Mechanistic representations of pharmacology encompassing relevant disease pathology, drug disposition, and drug-disease interactions to provide a holistic quantitative understanding of disease biology and anticipated treatment effects

2 nice features of QSP modeling

1. Data of interest is not necessary

2. Ability to translate similar data

Survey of publicly available QSP models finds none that are readily applicable for this program goals

Goal: Predict clinical peripheral cytokine dynamics from bispecific dosing in solid tumor

PMID: 35350575

PMID: 35350575

Tebentafusp clinical data was chosen for translation to predict clinical cytokine dynamics for our bispecifics of interest

Tebentafusp – FDA approved CD3-based bispecific

- FDA approved for unresectable or metastatic uveal melanoma on January 25th 2022
- Currently the only CD3 bispecific approved for solid tumors
- Analogous clinical data of interest available publicly (PK, cytokine dynamics)

PMID: 34551229

QSP model to capture tebentafusp clinical cytokine dynamics

Key MOA assumptions

- Trimer formation triggers cytokine secretion by immune cells
- Immune cells become cytokine secretion refractory (trigger insensitive) over time
- There is a long refractory period before immune cells become trigger sensitive again

Model captures Tebentafusp cytokine dynamics

Model predicts on-target off-tumor interaction is the primary driver of peripheral cytokines

2 step-up doses is optimal for reducing cytokine release

The dose range applied during step-up affects CRS

Step-up dosing is not expected to effect bispecific efficacy

C)	# step-ups	0	1	2	3	4	5	
	AUC _{0-1week}	3.1 [0.5 – 21]	1.9 [0.3 – 13]	1.4 [0.3 – 10]	0.8 [0.1 – 5.5]	0.5 [0.08 – 3.1]	0.3 [0.04 – 1.6]	lenas
	AUC _{7-8week}	5.5 [1.0 – 34]	5.4 [0.9 – 33]	5.2 [0.9 – 33]	4.9 [0.9 – 31]	4.6 [0.8 – 29]	4.3 [0.8 – 27]	

Utilizing QSP modeling to investigate strategies to mitigate CRS

CXCL10 C_{max} CL 72.7 71.8 71.2 64.7 58.8 35.2 24.3 7.9 4.73 200 kon CD3 1.7 4.46 7.85 32.6 58.8 163 200 234 236 kon gp100 1.89 5.34 9.45 35.9 58.8 125 147 173 177 150 CD3 per cell 1.7 4.45 7.84 32.6 58.8 163 200 234 236 100 gp100 per cell 1.7 4.45 7.82 32.6 58.8 161 198 230 233 Emax_immune_cell 1.69 4.43 7.81 32.5 58.8 165 203 235 236 50 k_deplete 96.6 88.7 84.2 67.8 58.8 31.6 21 6.07 3.59 0, 05 0, 05 , 5 10 10 10

Parameter Fold-Change from Baseline

Sensitivity analysis quantifies cytokine release with respect to selectable bispecific or tumor parameters

Future QSP model directions and applications

Extend model scope

Add CRS management

Apply to other bispecifics

NCT	Phase	Indications
NCT01723475	1	Metastatic castration-resistant pros- tate cancer
NCT03792841	1	Metastatic castration-resistant pros- tate cancer
NCT03296696	1	R/R Glioblastoma
		PMID: 34039409

- Immune cells (dendritic, NK, etc.)
- Tumor growth inhibition
- Linking cytokines to CRS

- CRS management therapy (tocilizumab, siltuximab, etc.)
- Optimize management time
- Optimize management criteria
- > 50 CD3-bispecifics in clinical development currently
- Non-CD3 bispecifics (CD137, dual TAAs, etc.)

•

Summary

- The QSP model provides mechanistic insights into:
- 1) cytokine attenuation by immune cell desensitization
- 2) toxicity from on-target off-tumor effects
- 3) safety (cytokine) and efficacy (tumor trimer) versus step-up dose regimen

CPT: Pharmacometrics & Systems Pharmacology

ARTICLE 🖻 Open Access 💿 🛈

Mechanistically Modeling Peripheral Cytokine Dynamics Following Bispecific Dosing in Solid Tumors

Jared Weddell 🔀

Xastellas

First published: 29 January 2023 | https://doi.org/10.1002/psp4.12928

Acknowledgements

Astellas PKMS-US

Astellas bispecific project teams

