

A PK/PD Model for the Assessment and Optimization of PROTACs

Robin Haid ^{1,2} Andreas Reichel ¹

¹ Bayer AG - Preclinical M&S
 ² ETH Zurich - Biopharmacy

2

Introduction PROTAC – Mechanism of Action

Approach Applying the four pillars concept to Proteolysis Targeting Chimeras¹

Basis for a mechanistic modeling framework that addresses three key questions

4

Overview

Preclinical PK/PD modeling plays a crucial role in three distinct translational steps

- 1) Translation from biochemical to cellular level
 - How to increase degradation potency?

- 2) Translation from cellular level to animal model
 - > Which compounds to take in vivo?

- 3) Translation from animal model to human patients
 - What is the relevant dose in humans?

Overview

Preclinical PK/PD modeling plays a crucial role in three distinct translational steps²

1) Translation from biochemical to cellular level

6

Overview Already with in vitro data, different tasks require different models

- I) Assessing PROTACs as Degraders
 - How much degradation is there?

- II) Model-Informed Optimization of PROTACs
 - How to increase degradation?

- III) Deriving a Target Value for Degradation
 - How much degradation is necessary?

Overview

Already with in vitro data, different tasks require different models

- I) Assessing PROTACs as Degraders
 - How much degradation is there?

- II) Model-Informed Optimization of PROTACs
 - How to increase degradation?

- III) Deriving a Target Value for Degradation
 - How much degradation is necessary?

Describe the concentration-response profile mathematically³

 D_{max} ... max. extent of degradation DC_{50} ... conc. of half-max. deg. DC_{max} ... conc. of max. deg

→ cf. E_{max} , EC_{50} etc. with relevant <u>e</u>ffect being <u>d</u>egradation

→ hook effect: @ high conc., the non-degrading binary complexes dominate

The E_{max} model cannot account for the hook effect at high drug concentrations

BAYER

Describe the concentration-response profile mathematically³

Hook effect: at high concentrations PROTACs mainly form binary instead of ternary complexes

BAYER

Describe the concentration-response profile mathematically³

> The hook model² fits all the data and gives an accurate estimate of D_{max}

^{2.} Haid & Reichel (2023) Pharmaceutics DOI: <u>10.3390/pharmaceutics15010195</u> ^{3.} data: Zorba et al. (2018) Proc. Natl. Acad. Sci. USA DOI: <u>10.1073/pnas.1803662115</u>

BAYER

Describe the concentration-response profile mathematically³

> The E_{max} model tends to **overestimate** D_{max} and results in **flawed** compound **rankings**

BAYER

Account for the impact of the experimental incubation time^{4,5}

The decision, for how long cells are incubated in vitro is somewhat arbitrary

^{2.} Haid & Reichel (2023) Pharmaceutics DOI: <u>10.3390/pharmaceutics15010195</u>
 ^{4.} data: Mares et al. (2020) Commun. Biol. DOI: <u>10.1038/s42003-020-0868-6</u>
 ^{5.} data: Mathieson et al. (2018) Nat. Commun. DOI: <u>10.1038/s41467-018-03106-1</u>

BAYER

Account for the impact of the experimental incubation time^{4,5}

concentration (C) - (nM)

The choice of incubation time influences the extent of degradation that is observed

^{2.} Haid & Reichel (2023) Pharmaceutics DOI: <u>10.3390/pharmaceutics15010195</u>
 ^{4.} data: Mares et al. (2020) Commun. Biol. DOI: <u>10.1038/s42003-020-0868-6</u>
 ^{5.} data: Mathieson et al. (2018) Nat. Commun. DOI: <u>10.1038/s41467-018-03106-1</u>

Account for the impact of the experimental incubation time^{4,5}

	24 h	steady state
D _{max} (%)	95.5	94.9
<i>DC</i> ₅₀ (nM)	0.65	0.29
DC _{max} (nM)	73.7	68.9

BAYER

→ incubation time is most critical for potency (DC_{50})

- the extended hook model² is fitted to degradation data observed after 6 h
- 2) using the protein's baseline half-life ($t_{\frac{1}{2},P} = 45 \text{ h}$), deg. after 24 h is predicted
- the predicted profile (24 h) is confirmed experimentally to validate the approach

The extended hook model² estimates the true (i.e. steady-state) degradation parameters

Account for the impact of the experimental incubation time

- → the necessary incubation time depends on:
 i) protein half-life (t_{1/2,P})
 - ii) drug effectiveness (D_{max})
- → as a rule of thumb, choose incubation times to roughly match POI half-life
- → too short an incubation makes the cpd. seem worse than it is

	\boldsymbol{D}_{\max} (%)				
$t_{\frac{1}{2},P}(h)$	70	80	90	95	99
4	5	4	4	3	3
12	13	12	10	9	9
24	26	23	20	18	17
48	52	45	39	(36)	33
96	103	90	77	71	66

→ incubation for 24 h is long enough for the green cells, but NOT for the yellow ones

Incubation for 24 h might <u>NOT</u> be sufficient to observe the steady-state parameters

Overview

Already at the in vitro stage, different tasks require different models

- I) Assessing PROTACs as Degraders
 - How much degradation is there?

- II) Model-Informed Optimization of PROTACs
 - How to increase degradation?

- III) Deriving a Target Value for Degradation
 - How much degradation is necessary?

BAYER E R

II) Model-Informed Optimization of PROTACs

Determine the biochemical parameters governing target degradation

The k_{cat} model² integrates compound-specific parameters with physiological parameters

Predict target degradation from a compound's binding affinities ^{3,6}

	Cpd. A
$K_{\mathrm{D,P}}$ (nM)	1,535
$K_{\mathrm{D,E}}$ (nM)	15,700
α(1)	0.89

BAYER

 $K_{D,P}$... affinity for target protein (POI) $K_{D,E}$... affinity for E3 ligase (enzyme) α ... interaction of POI and E3 ligase

→ three binding partners, hence three equilibrium constants

) the binding affinities ⁷ are used to fit the observed degradation data

The first step in improving a bad PROTAC is identifying its shortcomings

^{3.} data: Zorba et al. (2018) Proc. Natl. Acad. Sci. USA DOI: <u>10.1073/pnas.1803662115</u>
 ^{6.} data: Bradshaw et al. (2015) Nat. Chem. Biol. DOI: <u>10.1038/nchembio.1817</u>
 ^{7.} related poster: Kim et al. (2023) PAGE Conference Link: <u>https://tinyurl.com/4z45wv8r</u>

Predict target degradation from a compound's binding affinities ^{3,6}

Due to its multiparametric nature (three affinities), PROTAC optimization is often non-intuitive

BAYER

Predict target degradation from a compound's binding affinities ^{3,6}

	Cpd. A	Cpd. B
$K_{\mathrm{D,P}}$ (nM)	1,535	138
$K_{\mathrm{D,E}}$ (nM)	15,700	3,100
α(1)	0.89	1.34

BAYER

→ all three binding affinities need to be considered

- the binding affinities ⁷ are used to fit the observed degradation data
- the resulting model tells us, how binding affinities have to be improved
- 3) the prediction (Cpd. B) is validated with experimental data from a real PROTAC

The k_{cat} model² guides medicinal chemistry during compound optimization

 \rightarrow baseline POI levels (P₀) are of minor concern here

Degradation in new cell types can be predicted from **physiological** parameters

Ramos

splenocytes

^{3.} data: Zorba et al. (2018) Proc. Natl. Acad. Sci. USA DOI: 10.1073/pnas.1803662115 ^{5.} data: Mathieson et al. (2018) Nat. Commun. DOI: <u>10.1038/s41467-018-03106-1</u> ^{6.} data: Bradshaw et al. (2015) Nat. Chem. Biol. DOI: 10.1038/nchembio.1817

BAYER E R

II) Model-Informed Optimization of PROTACs

Link target engagement (pillar II) to target degradation (pillar III)^{3,6}

- → there are diminishing returns to increasing TE (hyperbolic relation)
- → optimizing affinities might not always be sufficient (but here it is)
- → increasing drug conc. only increases TE up to a set max. value (hook effect)

→ max. degradation is plotted vs. max. target engagement for different compounds

PROTACs require little target engagement due to their catalytic MOA

Overview

Already at the in vitro stage, different tasks require different models

- I) Assessing PROTACs as Degraders
 - How much degradation is there?

- II) Model-Informed Optimization of PROTACs
 - How to increase degradation?

- III) Deriving a Target Value for Degradation
 - How much degradation is necessary?

Translate degradation to a downstream pharmacodynamic effect⁸

The most relevant PD effects are located downstream of protein degradation

BAYER

Translate degradation to a downstream pharmacodynamic effect⁸

The PD model² links those downstream effects directly to target protein degradation

Translate degradation to a downstream pharmacodynamic effect⁸

concentration (C) - (nM)

the degraded protein as a target

> Establishing such a mechanistic model validates

^{8.} data: *Mares et al. (2020) Commun. Biol.* DOI: 10.1038/s42003-020-0868-6

III) Deriving a Target Value for Degradation Consider that PROTACs act both as degraders and as inhibitors

→ the PD model was fitted to these data and to two other profiles (not shown)

Inhibition by the PROTAC compensates for the hook effect in degradation

Consider that PROTACs act both as degraders and as inhibitors⁵

The protein's baseline half-life determines the time-course of degradation

III) Deriving a Target Value for Degradation Consider that PROTACs act both as degraders and as inhibitors⁵

- the time-course of deg. is predicted from the protein's baseline half-life
- 2) a degradation-incompetent control cpd. is used to estimate inhibitory potency

Inhibition might obscure the relationship between degradation and the PD response

Consider that PROTACs act both as degraders and as inhibitors⁵

- the time-course of deg. is predicted from the protein's baseline half-life
- a degradation-incompetent control cpd. is used to estimate inhibitory potency
- the time-course of the PD response is predicted for the active **PROTAC**

PROTACs that act as both degraders & inhibitors might feature a more rapid onset of action

Take-Home Messages

Three distinct applications for pharmacodynamic modeling of in vitro data

I) Assessing PROTACs as Degraders

- > The *hook model*² captures how degradation depends on:
 - -) PROTAC concentration \rightarrow hook effect
 - -) incubation time \rightarrow extrapolation to steady state profile

II) Model-Informed Optimization of PROTACs

- > The k_{cat} model² predicts degradation from biochemical parameters
 - -) to optimize a compound, increase its three binding affinities
 - -) consider expression levels of E3 ligase and protein half-life when translating in vitro data

III) Deriving a Target Value for Degradation

- > The *PD model*² translates degradation to a downstream effect
 - -) define a target value for the PD effect and translate that to a target value for degradation
 - -) inhibitory activity of PROTACs allows for rapid onset of action & compensates for hook effect

To be Continued ...

Going in vivo, implications for drug discovery & real-world case studies

- 1) Translation from biochemical to cellular level
 - How to increase degradation potency?

- 2) Translation from cellular level to animal model
 - > Which compounds to take in vivo?

- 3) Translation from animal model to human
 - What is the relevant dose in humans?

Acknowledgements

We thank the following collaborators for valuable discussions and inspiration:

✤ Bayer AG

- DMPK
 - -) Stephan Menz
 - -) Stefanie Zimmermann
 - -) David Banczyk
 - -) Michaela Bairlein
 - -) Mark Jean Gnoth
 - -) Katrin Georgi
- Pharmacology
 - -) Clara Lemos
 - -) Heike Schäcke
- Biochemistry-) Laura Luh
- Chemistry-) Philipp M. Cromm

✤ ETH zürich

Institute of Pharmaceutical Sciences
 -) Prof. Stefanie-Dorothea Krämer

- University of Potsdam
) Prof. Wilhelm Huisinga
- Freie Universität Berlin
 -) Prof. Charlotte Kloft

Discussion What do you think about all of this?

