

Creating and Using a Physiological Model to Evaluate GPR119 Agonism as a Diabetes Therapy

David Tess, Pfizer PDM and Rebecca Baillie, Rosa & Co., LLC

Complex disease with multiple interacting systems

- Co-administered drugs
- Difficult to get drug approval
 - Other drugs on market
 - Cardiovascular impact
 - Efficacy can cause adverse events

GPR119: Class A GPCR Two Sites of Action For Better Glycemic Control

Why a Mechanistic, Physiological Model?

- Clarify mechanism of action
- Identify drivers of clinical response
- Evaluate drug class before clinical studies
- Address complexity in a quantitative manner
- Analyze mechanistic patient variability

- Comparative efficacy of competitor's drugs
- Optimize compound characteristics
- Identify limitations of animal models
- Set first-in-human dose

- Evaluate potential of GPR119 agonism as a diabetes therapy
 - Can GPR119 agonism provide comparable glucose control to current therapies (*e.g.* sitagliptin or exenatide)?
- Understand the relative contributions of direct and indirect action of GPR119a on glucose control
- Develop an internal knowledgebase of systems pharmacology model
- Serve as a platform for future target evaluations

> A mass balance model of glucose metabolism

- Sedentary lifestyle
- Energy homeostasis (± 100 kcal/day)
- No starvation; overnight fasting only
- Proteins and fat utilization assumed
- > Subchronic model (\leq 12 weeks)
 - No long-term disease progression or reversal by therapies

Model Modules

Glucose Absorption

Incretins

Insulin & C-peptide

Model Calibration

- The model was calibrated with hundreds of literature citations
- Approximately 10% withheld for final validation

- Data reported for GPR119 agonism are sparse
- Metabolex described clinical results at ADA conferences^{1,2} MBX-2982 results are the only available GPR119a clinical data
 - Single and multi-dose PK
 - Mixed meal tolerance (MMTT)
 - Glucose lowering
 - Total GLP-1

> These data were used in our model to evaluate GPR119a

¹ Roberts, B., et al. (2009). "American Diabetes Association 69th Annual Scientific Sessions," New Orleans, LA, USA, 5–9 June, Abstract 164-OR.
² Roberts, B., et al. (2010). "American Diabetes Association 70th Annual Scientific Sessions," Orlando, FL, USA, 25–29 June, Abstract 603-P.

MBX-2982 Data Limitations

Unknown demographics of study volunteers and patients

 Model virtual patients selected to approximate reported fasting plasma glucose

Unknown composition of the MMTT

- Assumed an 8 oz Ensure Plus[®] challenge
- Glucose absorption parameters modified to better fit reported glucose excursion

MBX-2982 Pharmacokinetics

- 2-compartment oral kinetics
- Dose independent clearance, volume, and intercompartmental rates
- Dose dependent absorption rate and extent

MBX-2982 Pharmacodynamics

MBX-2982 mixed meal tolerance test (MMTT) glucose excursion lowering provided a concentration-effect relationship to establish an effective EC₅₀

- multiple studies of various populations and study lengths
- Both sites of GPR119 agonism (ß and L cells) were assumed to have equivalent potencies (EC₅₀) and Hill coefficients (n_{Hill})

GPR119a Mediated GLP-1 Secretion

- In the model, GPR119a mediated GLP-1 secretion parameterized as additive to the basal- and nutrient-dependent secretion rates
 - [nutrients] represents the amount of carbohydrates and fat in the intestines
- GPR119 agonism is predicted to maximally stimulate basal incretin secretion by 1.8-fold based on the observed postprandial elevation in total GLP-1 during a MMTT following a single dose of MBX-2982 in healthy volunteers (pooled 300, 600, 1000 mg)

GPR119a Mediated GLP-1 Secretion

- While GPR119a mediated GLP-1 secretion contributes substantially to glucose lowering, it does not give explanation to all the glucose lowering
- The difference was parameterized through the direct influence of GPR119 agonism on GSIS

GSIS Potentiation & Shift

GPR119a & GLP-1 Additivity

GPR119a Mediated GSIS

Emax of potentiation and shift effects on GSIS were parameterized to best fit the MBX glucose lowering

The additive and limited Emax hypotheses have different parameters

Contributions of GPR119a Effects on HbA1c Lowering

Direct and indirect actions of GPR119 agonism equally contribute to glucose control

Virtual Patient Demographics

- 2003 NHANES database
- Age: 20-85 years
- Height: 142-187 cm
- Weight: 64-155 kg
- Body mass index: 20-60
- HbA1c: 5-11 %
- Fasting plasma glucose: 89-230 mg/dL
- Fasting plasma insulin: 17-448 pM

Target Population Outcome

MBX-2982 forecast to only achieve sitagliptin-like HbA1c lowering in type 2 diabetics

Target Population Outcome

What if higher intrinsic activity is achievable?

Target Population Outcome

- What if higher intrinsic activity is achievable?
- Exceed sitagliptin- and approach exenatide-like HbA1c lowering in Type 2 diabetics

Combination Therapies

- Allows exploration of combination therapies
- Model suggests that understanding the additivity of GPR119a and GLP-1 may be of critical importance to this mechanism's commercial viability

- Systems approach was used to create a predictive model of GPR119 agonism, without clinical data
- Even with sparse data, we could quantify the relationship between the GPR119 agonism Emax and likely human outcome
- Predicted results from chronic trials (HbA1c) using subchronic model results (average plasma glucose)
- Used modeling analysis to better assess potential for GPR119 agonism as a diabetes target

- Systems pharmacology models allow forecasting of late stage (phase II & III) outcome from early signs of efficacy (preclinical and phase I)
- Systems models have significant initial resource requirements, yet provide unique insights
- Their benefit-to-resource ratio improves with each addition utilization

Acknowledgments

Pfizer

- Tristan Maurer
- Danny Chen
- Rosa & Co., LLC
 - Jim Bosley
 - Christina Friedrich
 - Ron Beaver

JDesigner

- Herbert Sauro U of Washington
- Frank Bergman

Caltech