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Introduction

Background

• QSP models must find a way to integrate biological components to 
predict the clinical endpoints of interest to the clinical team

• SLE is particularly challenging even for clinicians designing new 
clinical trials due to the variety of clinical manifestations and the 
choice between multiple clinical scores

• QSP modeling allows to link mechanistic pathways to SLE clinical 
score components  and support rational trials designs with 
predictions of relevant clinical SLE endpoints

Objectives

• Establish a link between systemic pathways involved in cutaneous SLE 
pathophysiology represented in the QSP model and components of 
the clinical SLE activity scores

• Calibrate the change in the SLE disease activity score components 
using published response to standard of care (SOC) therapies

• Qualify the overall SLE disease activity endpoints and evaluate clinical 
responses to SOC therapies and new SLE drugs

• Increased KC activity and differentiation induced by inflammatory 
mediators resulting in rapid skin turnover (Fig. 2)

• Altered corneocyte layer organization resulting in “scaling” aspect

• Increased vascular permeability resulting in redness or “erythema”

• Immune cell infiltration and auto-Abs deposit at the basal lamina 
propria with basal KC, melanocyte and hair follicle cell death

o Can ultimately result in mucosal membrane ulcers, hair loss or 
alopecia, skin dyspigmentation and scarring

CLASI-A Response to Therapies

• The SLE QSP Platform includes prototypic lymph node (LN), skin and 
blood compartments with relevant cell types and functions (Fig. 1):

o Immune cells: pDCs, T cells, B cells, macrophages

o Skin cells: keratinocytes (KCs) and corneocytes 

o Cell proliferation, differentiation, mediators and autoantibodies 
(auto-Abs) production (blue arrows)

o Positive (green) and negative (red) regulation by pro- and anti-
inflammatory mediators and recruitment by chemokines

• The model also includes steroids as SOC therapies and anifrolumab 
anti-IFNɑ receptor (IFNAR) as a test SLE therapy. The primary 
endpoint is Cutaneous Lupus Area and Severity Index (CLASI). 

• The SLE QSP Platform can predict CLASI scores 

relevant to clinical endpoint measured in SLE trials

• The model helped established mechanistic 

relationships between biological entities and clinical 

manifestations that could provide useful biomarkers

• Calibration of the QSP model CLASI could be improved 

with better reporting of CLASI subscores in SLE trials 

Conclusions

Figure 4: Model simulations (solid lines) match clinical data (dashed lines) for reduction in 
CLASI-A score in SLE patients treated with 150 mg or 300 mg anifrolumab Q2W SC. 

SLE Model Design

Figure 2 : Structure of the epidermis (left) and KC lifecycle representation (right).

Figure 1: Components of the SLE QSP model and their interactions.
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Figure 3: CLASI subscores in the Platform with baseline values* and (maximum clinical range). 
* Baseline values for each CLASI subscore estimated from literature data in moderate SLE patients (AlE’ed et al. 2018  ) 

• Individual CLASI subscores were linked to relevant model biological 
components based on scientific understanding of the mechanisms 
involved for each clinical manifestation (Fig. 3)

• A baseline average value was estimated for each subscore*

• A mathematical dynamic relationship was established between 
model components and individual CLASI subscores

CLASI Score Implementation 

Cutaneous SLE Lesions Characteristics Steroid Effects Implemented 

Anifrolumab + SOC background steroid simulations match 
clinical trial CLASI-A response in SLE patients.

Table I: Steroid effects on various cell types based on in vitro literature data 

Cell Type
IC50 

(steroids)
Range of in vitro 

inhibition
References

Keratinocytes
10-100 nM

30 nM
30 nM

-20-70% activation
-10-40% proliferation
-60-80% apoptosis

(Stojadinovic et al. 2007, Le et al. 2010, 
Guichard et al. 2015, Zulfakar, Ong, and 
Heard 2012, Trautmann et al. 2001)

DCs 5-50 nM -50-80% activation
(de Jong et al. 1999, Piemonti et al. 1999, 
Weichhart et al. 2011, Shodell, Shah, and 
Siegal 2003)

T cells 1-10 nM -60-90% activation
(Migliorati et al. 1994, Braun et al. 1997, 
Sun et al. 2011)

B cells 10-100 nM -25-70% activation
(Tseng et al. 2006, Weisbart and Colburn 
1984, Chaia-Semerena et al. 2020, Cupps 
et al. 1985, Bowen and Fauci 1984)

Macrophages 1-10 nM -60-90% activation
(Lim et al. 2007, Werb 1978, Luedke and 
Cerami 1990)

Vasculature 30 nM -50-70% activation (Logie et al. 2010)

• Steroid response was calibrated to match placebo CLASI-A response 
from recent anifrolumab clinical trial (Bruce et al. 2019) (not shown)

• Anifrolumab Q2W SC was simulated on a steroid background therapy 
and compared to recent clinical trial results (Bruce et al. 2019) (Fig. 4)
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