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Abstract (247 of 250-word limit):  

Despite considerable investment into potential therapeutic approaches for Alzheimer’s disease 

(AD), currently approved treatment options are limited. Predictive modeling using quantitative 

systems pharmacology (QSP) can be used to guide the design of clinical trials in AD. This study 

developed a QSP model representing beta-amyloid (Aβ) pathophysiology in AD. The model 

included mechanisms of Aβ monomer production and aggregation to form insoluble fibrils and 

plaques; the transport of soluble species between the compartments of brain, cerebrospinal 

fluid (CSF), and plasma; and the pharmacokinetics, transport, and binding of monoclonal 

antibodies to targets in the 3 compartments. Ordinary differential equations were used to 

describe these processes quantitatively. The model components were calibrated to data from 

the literature and internal studies, including quantitative data supporting the underlying AD 

biology and clinical data from clinical trials for anti-Aβ monoclonal antibodies aducanumab, 

crenezumab, gantenerumab, and solanezumab. The model was developed for an 

apolipoprotein E (APOE) ɛ4 allele carrier and tested for an APOE ɛ4 non-carrier. Results indicate 

that the model is consistent with data on clinical Aβ accumulation in untreated individuals and 

those treated with monoclonal antibodies, capturing increases in Aβ load accurately. This 

model may be employed to investigate additional AD mechanisms and their impact on 

biomarkers, as well as predict Aβ load at different dose levels for monoclonal antibodies with 

known targets and binding affinities. This model may facilitate the design of scientifically 

enriched and efficient clinical trials by enabling a priori prediction of biomarker dynamics in the 

brain and CSF.  
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INTRODUCTION  
 
 Alzheimer’s disease (AD) is a chronic and progressive neurodegenerative disease 

associated with decline in memory and cognitive function in patients.1 Current estimates 

suggest that between 15% and 20% of people above the age of 60 have mild cognitive 

impairment, and up to 15% of these patients will progress to dementia within a year.2 The 

projected worldwide burden of AD could be over 100 million by 2050. The known 

pathophysiology of AD includes the aggregation and accumulation of amyloid beta (Aβ) into 

oligomers and plaques, and the aggregation of the microtubule-associated protein tau into 

neurofibrillary tangles in the brain.1 Both Aβ and tau are biomarkers for AD diagnosis and have 

been targets for drug development.3 

Despite considerable investment, currently, 4 drugs are approved by the Food and Drug 

Administration (FDA) to treat symptoms of AD; however, they do not halt or significantly slow 

disease progression, with over 100 having negative results in clinical trials.1, 4 In June 2021, the 

FDA granted accelerated approval to aducanumab, a monoclonal antibody (mAb) targeting Aβ, 

as the first disease-modifying therapeutic for the treatment of AD based on reduction of 

Aβ plaque in the brain and the reasonable likelihood to predict a clinical benefit.5 Aducanumab 

was the first drug approved for AD since 2003.5 

Clinical trials in AD have been facing setbacks due to a lack of effect on the primary and 

secondary clinical endpoints that assess cognitive and functional progression in patients.4 

Numerous challenges contribute to this lack of therapeutic progress in the field. Large sample 

sizes are required for AD trials due to the heterogeneous responses observed in participants.6 

Issues with participant drop-out or death can be a problem due to the long duration of trials 

 21638306, ja, D
ow

nloaded from
 https://ascpt.onlinelibrary.w

iley.com
/doi/10.1002/psp4.12876, W

iley O
nline L

ibrary on [01/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



 
 

needed to evaluate cognitive improvements adequately.6 Dose-ranging studies are not easily 

feasible, and failed trials lead to questions about drug dosing and efficacy.7 The right choice of 

clinical trial participants is a factor in clinical trial success as well. Considering AD pathologic 

manifestation begins much earlier than symptom onset, a key challenge in early stages of the 

disease is identification of participants who could benefit from treatment.6  

Biomarkers can play a key role in clinical trial success too. The accelerated approval of 

aducanumab was based on the drug’s effect on the surrogate biomarker endpoints of dose- and 

time-dependent reduction in the level of amyloid plaque in the brain.5 This emphasizes the 

considerable role that biomarkers can play in closing the gap between drug effect and potential 

clinical benefit. Identifying the mechanisms of disease progression and drug effect in the brain 

via non-invasive, easy-to-measure, blood-based biomarkers would be ideal. Better methods to 

assess adequate concentrations of the drug available in the brain are also needed.  

Predictive modeling provides one approach to support drug development in the face of 

these issues. Quantitative systems pharmacology (QSP) modeling aims to quantitatively assess 

drug pharmacology and downstream biology, including disease pathophysiology, in tandem.8 

Given the biological complexity of AD, QSP modeling is well suited for applications to guide 

clinical drug development. QSP modeling enables target identification and benchmarking of 

similarities and differences in dynamics of Aβ or tau biomarkers at different states of 

aggregation. It allows for representation of virtual patients based on targeted biological 

elements and enables simulation of clinical trial scenarios. A priori predictions of biomarker 

dynamics in difficult to measure regions, such as the brain and cerebrospinal fluid (CSF), can be 

made. QSP also provides a model to test various target- and treatment-related hypotheses, 
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leading to insights and guidance for drug development. More recently QSP models representing 

Aβ dynamics in AD have been published in the literature and highlight the strength of the 

approach to understand disease progression and Aβ biomarker dynamics in AD.9, 10 Our work is 

uniquely distinguished from the prior work on two key aspects: a) this work characterizes the 

dynamics of different biomarker species (Aβ 40 and 42 specifically) in detail. This enables a 

biologically plausible hypothesis-driven approach to understand the differences in the mode of 

action of the mAbs targeting the Aβ pathway thereby enabling quantitative benchmarking; b) 

the work incorporates and enables evaluation of the mechanistic differences based on the 

stage of the disease and the APOE ɛ4 carrier status enabling future exploration based on virtual 

patients with a specific phenotype.  

Here we present the development of a QSP model for AD and investigate its predictive 

capability using data from clinical trials of novel therapeutic agents targeting aggregated Aβ. 

The current model is solely focused on the Aβ component of AD pathology, considering Aβ 

pathology precedes tau pathology and cognitive impairment,11 without incorporating tau 

pathology or cognitive functionality. Our goal is to create a model that can support the 

development of clinical trials by allowing researchers to predict Aβ dynamics in the brain prior 

to participant enrollment. 

 

METHODS 

The AD QSP model was developed as a set of ordinary differential equations (ODEs; 

available in the supplemental material) implemented in MATLAB®SimBiology® version 2017B. 

The ODEs represent key pathophysiologic and therapeutic pathways in 3 compartments: the 
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brain, CSF, and plasma (Figure 1 depicts a schematic overview). The model tracks the insoluble 

and soluble biomarkers across these compartments, including production of Aβ in the brain and 

plasma, aggregation of Aβ in the brain, and the transport of soluble Aβ from the brain to the 

CSF and plasma. Aβ monomer production and secretion is regulated by β-secretase 1 (BACE1) 

and γ-secretase.12 Aβ40 and Aβ42 are produced and tracked separately and exhibit different 

behaviors, including higher aggregation and slower clearance rates for Aβ42.13, 14  
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The temporal scope of the model focuses on the ~20-year progression duration during 

which Aβ aggregation in the brain exhibits constant linear growth, i.e., the upward slope of the 

characteristic S curve.11 Aggregation is modeled as progressing from monomers to oligomers 

(assumed to be 10-mers) to fibrils to plaque. Aβ42 monomers aggregate at a higher rate than 

Aβ40, forming oligomers that contain a mix of species with relatively more Aβ42 than Aβ40.15 

Once the aggregated species have formed, their Aβ42 and Aβ40 content is not tracked 

separately, and further aggregation to higher order species is assumed to be driven by the 

species that form them. To facilitate comparison to clinical data, the quantitative assessment of 

the total Aβ burden, measured clinically as the standard uptake value ratio (SUVR) from 

positron emission tomography (PET) imaging, is calculated in the model assuming a linearly 

proportional relationship between the insoluble Aβ (fibril plus plaque) mass and SUVR. Soluble 

Aβ species are transported across the blood–brain-barrier by active transport or from brain 

interstitial fluid to CSF by bulk flow. Aβ monomers are also produced peripherally. All Aβ 

production, aggregation, transport, and clearance process parameters were informed by 

mechanistic data (Table 1).16–26  

States of Aβ aggregation in the three compartments were calibrated simultaneously to 

match available clinical data for untreated participants and participants undergoing treatment 

with the Aβ-targeting mAbs solanezumab,27 crenezumab,26 aducanumab,28 and 

gantenerumab.21, 29 Aβ-targeting mAbs in the model can be configured to bind to any form of 

Aβ including monomers, oligomers, fibrils, and plaque. The binding affinity for each form is 

mAb-specific, with solanezumab binding strongly to monomers only; crenezumab binding 

strongly to oligomers, moderately to monomers, and weakly to fibrils, and plaques; and 
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aducanumab and gantenerumab binding strongly to fibrils, plaque, and oligomers, and weakly 

to monomers (Table 2).28, 30–33 

 

Following subcutaneous or intravenous dosing with a mAb, the model follows mAb 

transport into the CSF and brain via passive diffusion. The pharmacokinetics of the mAb is 

described by a target-mediated drug disposition model based on its binding to Aβ. It then 

predicts brain target engagement based on target concentrations, mAb concentrations, and 

mAb binding properties for Aβ monomers, oligomers, and fibrils/plaque. Once bound to a 

target, the mAbs are assumed to inhibit further aggregation. The implementation of 

aducanumab and gantenerumab required an additional assumption of microglial activation and 

clearance of plaque, as further discussed in the results below. For more specific details about 

model calibration and implementation, see the supplemental methods. 

QSP modeling is useful for investigating the system-level effects of mechanistic 

differences between drugs or patient variability. One well-documented difference between 

patients with AD is in the apolipoprotein E (APOE) gene.34 To date, APOE remains the gene with 

the strongest impact on risk in non-familial sporadic AD.34 In addition to its role in lipid 

metabolism,35 APOE also mediates active transport of Aβ across the blood–brain barrier36 and 

regulates Aβ uptake into astrocytes.37 The APOE gene is polymorphic, with three major alleles 

that encode three protein isoforms: epsilon 2 (APOE ɛ2), epsilon 3 (APOE ɛ3), and epsilon 4 

(APOE ɛ4).35 The ɛ4 isoform is associated with increased risk of AD, while ɛ2 appears to be 

protective and ɛ3 is considered ‘neutral’. The impact of APOE ɛ4 expression on rates of Aβ 

production and clearance have been reported in the literature.38, 39 
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The model was initially developed to represent the most typical patient with AD, an 

APOE ɛ4 carrier.1 As a way of validating the QSP model’s representation of biology, we tested 

whether implementing observed differences between carriers and non-carriers in the model 

would produce the differences in Aβ aggregation rates that have been observed. Toward this 

goal, a second virtual patient was created that represented an APOE ɛ4 non-carrier. 

Mechanistic differences between APOE ɛ4 carriers and non-carriers have been identified and 

implemented as parameter differences in the model as summarized in Table 3.38, 39  

 
 
RESULTS 

The AD model integrates known characteristics of AD into a single mechanistic 

framework. Aβ species concentrations in brain, CSF, and plasma are consistent with data and 

are dynamically maintained. Aβ plaque in the brain increases at a rate that is consistent with 

clinical progression data. The model is also able to reproduce clinical responses to Aβ-targeting 

antibodies, as further described below. Only parameters relevant to mAb treatment, such as 

binding rates for different Aβ species, were changed to produce appropriate responses to 

all treatments. 

 

Pharmacokinetics 

 Prior pharmacokinetic (PK) models were adapted into the QSP model to recapitulate the 

dynamics of mAb concentrations in the plasma, and CSF. The mAb transport across the 

compartments was described using first-order processes. A peripheral compartment was 

included to capture the distribution of the mAb to other compartments. The model described 
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the plasma PK of the different mAbs at varied dosing-ranges and dosing-frequencies well. The 

calibration results are represented in Figure 2A-C and Figure S1A. 

 Clinical trial data from Phase II and Phase III studies of crenezumab were used for 

calibration of the CSF PK. The model described the data, which suggested that the CSF steady-

state mAb concentrations are generally between 0.2% and 0.3% of plasma concentration.40, 41 

The calibrated model was used to simulate the CSF and brain PK of other mAbs (Figure 2D-F 

and Figure S1B).  

 
Pharmacodynamic biomarkers 

Plasma and CSF  

The half-life of Aβ in plasma is approximately 3 hours.42 It was estimated that 40% of Aβ 

in plasma was derived from effluxed Aβ from the brain43 and the remainder was produced in 

the periphery. Calibration of plasma Aβ with mAb treatment using the crenezumab studies 

produced a model that adequately characterizes the biomarker dynamics of soluble Aβ40 and 

Aβ42 in plasma for crenezumab (Figure 2G and Figure S1C).  

The predominant mechanism of Aβ clearance in the CSF was implemented as efflux to 

plasma. It has been shown that enzymatic degradation activity is present in CSF but is greatly 

reduced in prodromal AD.44 Therefore, we assumed that the contribution to clearance via 

enzymatic degradation was negligible as compared with efflux. The reported absolute 

concentrations of Aβ in CSF are highly variable40 and hence the data calibration was performed 

using percent changes in the levels of the soluble biomarkers (Figure 2H and Figure S1D). The 
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model was used to predict the percent change in Aβ in CSF with solanezumab treatment and 

the predictions are consistent with the data (Figure 2I). 

 
Brain predictions 

The model was used to simulate and benchmark the effect of mAb administration on 

the dynamics of Aβ states in the brain (Figure 2J-L). The simulations were in accordance with 

the relative specificities of the mAbs for the various Aβ aggregation states and the predicted 

consequences of target engagement on state dynamics. The model suggests that the plaque-

targeting antibodies, gantenerumab and aducanumab, reduce plaque in the brain to below 10% 

of the initial concentrations by the end of the treatment duration (Figure 2L; dose and duration 

based on Phase III clinical trials). As Aβ plaque reduces, the oligomeric Aβ species also reduce as 

a consequence (Figure 2K). Consistent with clinical data, the model indicates that crenezumab, 

which primarily targets the oligomeric state, reduces the oligomeric Aβ and slows plaque 

growth (Figure 2K), but has minimal effect on existing Aβ plaque burden (Figure 2L). The Aβ 

monomer-targeting antibody solanezumab binds the monomeric state and simulations show no 

effect on oligomers or plaque at its clinical dose.  

 

PET imaging 

The calibration of PET imaging-based biomarker data included florbetapir SUVR data 

from crenezumab Phase III CREAD (NCT02670083) and CREAD2 (NCT03114657) trials, and the 

aducanumab Phase I trial (NCT01677572).28 The data from these studies represented SUVR 

change from baseline. The model calibrations are shown in Figure 3. According to the model, 
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crenezumab (Figure 3B) inhibits nascent plaque formation but does not produce a significant 

decrease in total plaque. Aducanumab produces a dose-dependent decrease in total plaque 

(Figure 3A). The model slightly under predicts the early reduction in SUVR but captures the 

response at a later time point.  

The calibrated model was then used to predict the SUVR change from baseline upon 

administration of the Phase III titration dose of aducanumab. The model predictions 

qualitatively capture the observed data from the Phase III studies (EMERGE: NCT02484547) as 

seen visually in Figure 3C. Similarly, the model was also used to predict the percent change in 

Aβ burden with gantenerumab treatment. The decrease in insoluble Aβ states compared well 

with the reported decrease in absolute Centiloids.29  

  

Investigation of plaque clearance by plaque-binding immunoglobulin G1 (IgG1) antibodies 

The mechanism of plaque clearance is a key element in evaluating and predicting mAb 

treatment efficacy. In the model, it is assumed that endogenous plaque clearance in absence of 

treatment is negligible. However, mAb binding to plaque allows for the recruitment and 

activation of microglia, which are capable of clearing plaque. The model implementation of the 

plaque-binding mAbs aducanumab and gantenerumab assumed that microglia would clear 

sections of plaque directly bound to the mAb via phagocytosis following a direct interaction 

between the bound mAb and fragment crystallizable (Fc) receptors. However, initial model 

simulations did not agree with published data following aducanumab treatment (Figure S2). 

Aducanumab treatment resulted in a fast initial clearance of plaque during the first year of 
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treatment which began to level off during the second year.28, 45 Model simulations suggested 

that the reported level of plaque clearance could not be achieved by the presumed mechanism 

of clearing only antibody-bound plaque. Given the estimated concentration of mAb in the brain 

and the known binding affinity of the mAb, only a small amount of plaque would be bound to 

the mAb at a given time. This assumption would lead to linear rather than exponential 

clearance dynamics, as demonstrated in initial simulations. Varying the clearance rate for mAb 

bound to plaque did not eliminate this discrepancy as the model could match either the  

1-year data point or the 2-year data point, but not both.  

The rate of plaque clearance following aducanumab treatment appears to suggest first-

order clearance of all plaque (Figure 3A). This effect is consistent across multiple doses of the 

drug and cannot be achieved under the assumption that only plaque directly bound to the mAb 

is being cleared by the newly activated microglia. To account for the discrepancy between the 

simulations and data, a new term was added to incorporate microglia activation in the presence 

of therapeutic antibodies. This effect is more pronounced in IgG1 antibodies, which are known 

to be relatively more activating compared with other IgG isotypes.46 Once microglia were 

activated in the model, the microglia were capable of clearing any plaque, independent of 

specific mAb binding. This mechanism still results in a small lag in achieving the ultimate 

clearance rate until mAb levels in the brain reach steady state, but the final result is a first-

order clearance of all plaque. Updated simulations qualitatively describe the clinical data for 

plaque clearance following treatment with IgG1 antibodies, such as aducanumab (Figure 3A). 

 

Creation of an APOE ɛ4 non-carrier virtual patient 
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 The APOE ɛ4 non-carrier virtual patient was developed by implementing mechanistic 

differences between APOE ɛ4 carriers and non-carriers (Table 3).38, 39 Decreased Aβ42 

production and increased clearance in the APOE ɛ4 non-carrier compared with the carrier 

caused a decrease in the Aβ42:40 ratio, decreased aggregation rate, and slower plaque 

progression (SUVR; Figure 4) for the APOE ɛ4 non-carrier in the model, consistent with clinical 

reports of earlier amyloid deposition in APOE ɛ4 carriers.47 The model’s prediction of the 

appropriately reduced progression rate in the non-carrier as a result of the mechanistic 

differences between carriers and non-carriers was a useful validation that plaque progression 

mechanisms are appropriately captured in the model.  

Discussion  

A major value of employing QSP to research a complex process, such as the pathology 

that underlies AD, is the ability to query the collective effects on the system that arise from 

numerous mechanistic factors acting in concert. We used QSP modeling to simulate Aβ 

dynamics in AD patients. The model was calibrated using virtual patients experiencing Aβ 

progression who possess the APOE ɛ4 gene. We introduced treatment effect using 4 Aβ 

targeting mAbs to calibrate/assess change in Aβ in the brain, CSF, and plasma. The model was 

then tested using virtual patients who did not have the APOE ɛ4 gene. The model was able to 

recapitulate untreated and treated outcomes and biomarker dynamics. 

The results of the brain prediction analysis confirmed that the target states, binding 

affinity, and the antibody concentrations determine biomarker dynamics. The model can be 

leveraged to predict Aβ burden or SUVR at different dose levels for mAbs with different binding 

specificities. The profile of the mAb’s binding properties and unique specificities for Aβ states 
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(i.e., monomer vs oligomer vs plaque) can lead to potentially different mechanisms of action 

with varied outcomes in both APOE subpopulations.  

The brain PK simulations for plaque-targeting mAbs suggested that steady-state PK 

concentrations are achieved only when plaque and mAb binding reach an equilibrium, due to 

the presence of large amounts of accumulated plaque in the AD brain that acts as a sink for 

mAb binding. This process takes time due to the excess of plaque relative to mAb concentration 

in the brain at the beginning. The time taken to achieve this equilibrium is dependent on the 

dose administered with higher doses reaching equilibrium sooner than lower doses. At the 

clinical doses, the model simulations suggest that aducanumab binding aggregated Aβ takes 

about 4–5 times longer to achieve equilibrium in contrast to crenezumab binding to oligomers.  

Modeling of PET imaging biomarker data suggested that clearance of plaque is not 

proportional to mAb-bound plaque alone. Modeling indicated that the clearance of unbound 

plaque is necessary to explain the observed clinical decrease in SUVR following aducanumab 

and gantenerumab treatment. This is supported by biological evidence for microglial activation 

by plaque-targeting antibodies. There are a number of potential hypotheses to explain how 

mAb in the brain leads to a decrease in plaque burden. There is strong evidence that the 

isotype backbone of the mAb influences the strength of the glial response to treatment.48 Both 

aducanumab and gantenerumab are IgG1 antibodies, which compared with other isotypes, are 

known to bind Fc receptors with higher affinity and elicit more robust activation of microglia 

and other innate immune cells. Therefore, clearance of plaque by microglia-mediated 

phagocytosis would be more efficient with treatments that employ antibodies of the IgG1 

isotype. Indeed, this appears to be supported by the observation that high doses of both 
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aducanumab and gantenerumab in clinical trials were associated with a significant risk of 

amyloid-related imaging abnormalities, believed to be a consequence of high glial activation.49 

A more detailed and mechanistic representation of microglia should be capable of producing an 

even greater match to the data, as modeling an initial burst of activation and recruitment of 

microglia following brain penetration by the mAb could explain the strong initial response as 

mAb levels are still reaching equilibrium. This lack of detail is a current limitation of the model 

and highlights a potential opportunity to further expand the model to include microglial 

activation mechanisms. 

APOE ɛ4 carriers and non-carriers can have different responses to therapeutic 

treatments as well.50 Implementation of mechanistic differences between APOE ɛ4 carriers and 

non-carriers led to a greater Aβ aggregation in carriers than non-carriers, providing an 

important validation for the model. Our simulation results indicate that the model may be 

leveraged to predict potential differences in carrier vs non-carrier progression of Aβ 

accumulation and a subsequent effect on response to therapeutic treatments, especially on 

their amyloid lowering capabilities.  

The current model has been used to compare and benchmark Aβ targeting therapies 

and suggests that agents targeting insoluble forms, specifically fibrils and plaque, are more 

effective in reducing the Aβ burden in the brain in comparison to therapies that primarily target 

soluble forms of Aβ (monomers and oligomers). The binding affinity to the diverse Aβ species 

can determine the relative clearance of the different forms of Aβ. However, the activation of 

downstream processes as a consequence of binding and clearance of Aβ also play a major role 

in the totality of effect on Aβ burden. It is imperative to understand the downstream effect of 
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Aβ engagement to understand its effects on Aβ clearance and further on the efficacy markers, 

cognition, and function. This model lays a foundation to explore similar downstream processes. 

The model is a useful platform for hypothesis testing of newer therapies targeting the Aβ 

pathway, or for assessing the impact of improved brain uptake technologies, and is positioned 

to leverage incoming data from very recent Aβ targeting agents such as donanemab and 

lecanemab, not used in model development, to improve the model calibration and predictions. 

A key feature of the QSP model is its flexibility to include additional mechanisms and 

pathways to the structure. This can be implemented in 2 ways: including diverse additional 

pathways (e.g., tau pathway) with the known connections of these pathways to the Aβ pathway 

and extending mechanistic details to already existent pathways (e.g., microglial plaque 

clearance and endogenous plaque clearance). In addition to the APOE ɛ4 non-carrier virtual 

population example, other extensions of the virtual population could include representation of 

autosomal-dominant AD patients, more progressed moderate AD patients, and more. The 

model serves as a backbone to implement and evaluate several such disease mechanisms and 

their potential impact on biomarker dynamics.  

 The model facilitates the design of more informative and efficient clinical trials by 

enabling a priori prediction of biomarker dynamics and target engagement in the brain  

(Figure 2J-L). Model validation extends the value of the model beyond that of a predictive tool. 

Our results show that mechanistic models can be used to examine the systemic implications of 

mechanistic perturbations and diversity more generally. The manifestation of pathology is 

rarely the result of a single factor, but rather the collective result of many factors working in 

concert. For example, APOE ɛ4 non-carrier simulations that matched observation were 
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achieved by implementing numerous contributing factors simultaneously. QSP modeling allows 

the query into emergent behaviors that are simply not manifested when the components are 

reduced in isolation. Our work illustrates that a systems approach can reveal insights that may 

otherwise be unrealized when employing reductionist approaches alone. 
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Study Highlights (150 of 150-word limit [not including the questions, 31 words]): 

 

What is the current knowledge on the topic? 

Designing clinical trials for Alzheimer’s disease (AD) is challenging. Quantitative systems 

pharmacology modeling supports the design of scientifically informed clinical trials.  

What question did this study address? 

How to leverage the data from prior clinical studies and known pathophysiology of AD 

quantitatively to understand disease and biomarker dynamics. 

What does this study add to our knowledge? 

The model enables simulation of target engagement and biomarker dynamics upon treatment. 

The study confirmed that documented mechanistic differences between apolipoprotein E ɛ4 

carriers and non-carriers can account for their different amyloid plaque progression rates. The 

study demonstrated that clearance of antibody-bound plaque is not sufficient to account for 

the clinical efficacy of aducanumab and suggested a hypothesized mechanism of plaque 

clearance due to microglial activation that is scientifically grounded and dynamically consistent 

with clinical results. 

How might this change drug discovery, development, and/or therapeutics? 

The model provides a platform to test competing mechanisms targeting the Aβ pathway and 

alternative biological mechanisms to assess the impact on biomarkers providing a priori 

information to design efficient clinical studies. 
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Figure Legends 

Figure 1 Key pathways for amyloid transport. Aβ, amyloid beta; APP, amyloid precursor 

protein; BBB, blood–brain barrier; CSF, cerebrospinal fluid. 

 

Figure 2 Calibration and simulation results for plasma PK (A-C), CSF and brain PK (D-F), plasma 

and CSF PD (G-I), and brain PD (J-L). Aβ, amyloid beta; CSF, cerebrospinal fluid; ISF, interstitial 

fluid; IV, intravenous; mAb, monoclonal antibody; PD, pharmacodynamic; PK, 

pharmacokinetic; Q4W, every 4 weeks; SC, subcutaneous; SD, standard deviation. 

 

Figure 3 Model calibrations (A-B) and predictions (C-D) overlaid on observed clinical data of 

changes in Aβ PET SUVR upon treatment with candidate mAbs: aducanumab Phase Ib PRIME 

study (A), crenezumab Phase III CREAD and CREAD2 (B), aducanumab Phase III EMERGE study 

(C), and gantenerumab Phase III SCarlet RoAD and Marguerite RoAD (D). Q4W, every 4 

weeks; SC, subcutaneous; SUVR, standard uptake value ratio. aReported in Centiloids. 

 

Figure 4 APOE ɛ4 carrier and non-carrier predictions for Aβ SUVR. Aβ, amyloid beta; APOE, 

apolipoprotein E; SUVR, standard uptake value ratio; VP, virtual patient. 
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SUPPORTING INFORMATION 
Additional supporting information may be found in the online version of the article at the 
publisher’s website. 
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Table 1 Aβ42 biomarker and Aβ SUVR values for normal, prodromal, and 
moderate-to-severe patients used to guide virtual patient development. Values 
are mean ± standard deviation unless otherwise specified 

Stage Cognitive 

impairment 

Aβ42 
CSF 

pg/mL 

Aβ 

PET 

SUVR (PiB tracer)a 

References 

Normal 
healthy 

None 206 ± 5516 

Median = 111 
(25–1060)17 

563.3 ± 
191.018 

 

< 1.4219 
(determined as 
cutoff for Aβ+) 

typical range  
1.17–1.3719 

Shaw et al. 200916   

Jack et al. 201719 
Mehta et al. 200017 

Maruyama et al. 200118 

 

Prodromal Early mild/ 

mild 

≤ 19220  
 

146 ± 3816 
 

539.5 ± 
149.618 (focus 
on intra-study 

values for 
trend) 

1.6521 
 

Rate of increase of 
.043 in SUVR 

( ̴3%)/year22-24 
 

Rate of increase 
1.3%/year25 

Steenland et al. 201420  
Shaw et al. 200916 

Ostrowitzki et al. 201721 
Villemagne et al. 201322 

Villemagne et al. 201123 
Villain et al. 201224 

 
Maruyama et al. 200118 

Landau et al. 201525 
AD Dementia 144 ± 4116 

 

Median = 38 
(25–325)16 

 

397.6 ± 
164.118 

̴1.8–2.0 (mild to 
moderate AD)26 

̴2.2 and greater 
(severe)22 

Rate of increase 
slows in late 
stages22-24 

Shaw et al. 200916 
Salloway et al. 201826 

Villemagne et al 201322 
Villemagne et al. 201123 

Villain et al. 201224 
Mehta et al. 200017 

Maruyama et al. 200118 

 
aCortical SUVR with cerebellar cortex reference region. 
Aβ, amyloid beta; AD, Alzheimer’s disease; CSF, cerebrospinal fluid; PET, positron emission 
tomography; PiB, Pittsburgh Compound B; SUVR, standard uptake value ratio.  
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Table 2 Antibody (mAb) dissociation constants for Aβ monomers, 
oligomers, fibrils, and plaque 

mAb KD  
Monomers 

KD  
Oligomers 

KD  
Fibril/plaque 

References 

Crenezumab 3-5 nM30 0.4-0.6 
nM30 50 nMa Ultsch et al. 201630 

Gantenerumab 17 nM 1.2 nM 0.6 nM Bohrmann et al. 
201231 

Solanezumab 10 pMb 0 0 Crespi et al. 201532 

Aducanumab > 1 μM 0.1 nM 0.1 nM Sevigny et al. 201628 
aAssumption used because crenezumab binds plaque poorly relative to 
oligomers.33  
bEstimated from Crespi et al. 2015.32 
Aβ, amyloid beta; KD, equilibrium dissociation constant; mAb, monoclonal 
antibody. 
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Table 3 Mechanistic differences in APOE ɛ4 carriers and non-carriers in the literature 
Parameter APOE ɛ4+ VP 

Value 

APOE ɛ4- VP Value Reference 

BACE1 Km (µM) 7.760 8.438 Stockley et al. 200638 

BACE1 Vmax (µM/h) 0.455 0.253 Stockley et al. 200638 

Aβ40 astrocyte receptor 

clearance fraction 

0.100 0.200 Deane et al. 200839 

Aβ42 astrocyte receptor 

clearance fraction 

0.117 0.235 Deane et al. 200839 

Aβ40 brain to CSF clearance 

fraction 

0.301 0.602 Deane et al. 200839  

Aβ42 brain to CSF clearance 

fraction 

0.353 0.707 Deane et al. 200839  

Aβ40 brain to plasma active 

clearance fraction 

0.349 0.698 Deane et al. 200839  

Aβ42 brain to plasma active 

clearance fraction 

0.246 0.492 Deane et al. 200839  

Clearance fraction parameters are expressed in terms of the fraction of clearance attributed to each pathway for 

the APOE ɛ4+ VP. Fractions add up to > 1 for APOE ɛ4- VP, indicating that the total clearance is expected to 

increase. Aβ40 and Aβ42 refer to Aβ monomers. 
Aβ, amyloid beta; APOE, apolipoprotein E; BACE1, beta-secretase 1; CSF, cerebrospinal fluid; Km, enzyme 
concentration at half of Vmax; Vmax, maximum rate of reaction; VP, virtual patient. 
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