Development of a Mechanistic Model of Keratinocyte Dynamics and Skin Barrier Function for Psoriasis Research

Michael Weis*, Douglas Chung, Vincent Hurez, Rebecca Baillie, Katherine Kudrycki, Michael Reed; Rosa & Co., San Carlos, CA 94070, USA

Problem Statement

Introduction

- Keratinocytes (KCs) have a **central role** in psoriasis
 - **Cytokine and chemokine** produced by KCs contribute to inflammation
 - KCs undergo **hyperproliferation**, resulting in thickened skin • Abnormal desquamation of corneocytes (CCs) causes scales
 - and itching
- Understanding KC behavior and response to interventions is critical to the development of new psoriasis therapies

Objectives

• Develop a focused QSP model of KC dynamics and skin barrier function that can be integrated within larger models of inflammatory skin disorders

Conclusion

- A focused model of keratinocyte differentiation was able to reproduce healthy and psoriatic skin dynamics • This model can be integrated within comprehensive QSP
- models of skin disorders
- Pharmaceutical clients were able to accelerate development programs for novel psoriasis therapies using our research with this model

Design and Qualification

- Model includes three states of KC differentiation representing the functional phenotypes present in normal and psoriatic skin (Figure 1):
 - Basal, proliferating KCs
 - Non-proliferative, **differentiating KCs**
 - **Corneocytes (CC)**, i.e., terminally differentiated keratinocytes
- KC proliferation, differentiation, and cornification rates are regulated by cytokines
- Hyperactivation of differentiation and cornification inhibits the quality of the resulting corneocytes and barrier function
- CC quality regulates their shedding, barrier function, and scaliness
- Reduced barrier function stimulates KC proliferation

Figure 1: Structure of the epidermis (top) and QSP model (bottom)

- **Literature data** informed the parameterization of the model, e.g.: • **Densities** of KCs and CCs in healthy skin and psoriasis plaques • **Turnover rates** of basal, differentiated KC, and CC in healthy skin
- **Fold change** in proliferation, differentiation, cornification, and desquamation rates in psoriasis plaques
- **Apoptotic index** in healthy and psoriatic skin
- **Effects of mediators** on proliferation, differentiation, and cornification • Trans-epidermal water loss (TEWL) measurements of barrier function
- in healthy and psoriasis subjects

Table 1: Example data constraints used for model calibration

Cell type	Healthy Skin	Psoriatic Plaque	Units
Keratinocytes	50,000 (10,000-100,000)	110,000 (2.2x healthy)	Cells/mm ² skin surface
Basal KCs	13 - 61	20	%
Differentiated KCs	39 – 60	45	%
Corneocytes (CCs)	19 – 27	35	%
Basal KC turnover	22	4	Days
KC differentiation	12	2	Days
CC desquamation	14	3	Days
Apoptotic index	0.12	0.035	%
TEWL	25	12	g/m²/h
*References available upon	request		

Example Simulation (Figure 2)

- inhibition of pro-inflammatory mediators

Figure 2: Simulated KC responses to inhibiting pro-inflammatory mediators ("Treated")

- and Severity Index (SPASI)
- SPASI score (as shown in **Figure 3**)

Figure 3: Mapping of QSP model components to SPASI sub-scores

• **Protocol**: Decrease all inflammatory mediators by 90% at the start of the simulation ("Treated") versus untreated baseline conditions • **Result**: Cell numbers and turnover rates return to healthy equilibrium • **Significance**: This is one example demonstrating that the model dynamics are consistent with expected KC responses to maximal

Example Application

• KC number and activation status are key contributors to clinically assessed disease activity scores, such as the Simplified Psoriasis Area

• This model has been integrated into larger psoriasis models, to predict the SPASI response to existing and novel therapies

• Components of the QSP model were mapped to components of the

r kers	SPASI Score
vation, lediators	Redness
vtes, vtes	Thickness
lumber, Quality	Scaling

• SPASI calculation parameters were fit to clinical data for **anti-TNF**α, anti-IL-23, anti-IL-17 (secukinumab, Figure 4) and methotrexate

• The QSP model was then used to predict the SPASI response to novel therapies and address specific drug development questions